

金属离子Bi³⁺掺杂Lu_{1-x}O₃: x%Ho³⁺荧光粉的发光性能

赵海琴 王林香 庹娟 叶颖

Luminescence properties of Bi³⁺ doped Lu_{1-x}O₃: x%Ho³⁺ metal ion phosphors

ZHAO Hai-qin, WANG Lin-xiang, TUO Juan, YE Ying

引用本文: 赵海琴, 王林香, 庹娟, 叶颖. 金属离子Bi³⁺掺杂Lu_{1-x}O₃: x%Ho³⁺荧光粉的发光性能[J]. 中国光学, 2021, 14(3): 528-535. doi: 10.37188/CO.2019-0222 ZHAO Hai-qin, WANG Lin-xiang, TUO Juan, YE Ying. Luminescence properties of Bi³⁺ doped Lu_{1-x}O₃: x%Ho³⁺ metal ion phosphors[J]. *Chinese Optics*, 2021, 14(3): 528-535. doi: 10.37188/CO.2019-0222

在线阅读 View online: https://doi.org/10.37188/CO.2019-0222

您可能感兴趣的其他文章

Articles you may be interested in

Li⁺, Zn²⁺, Mg²⁺掺杂Lu₂O₂:Er³⁺荧光粉的制备及发光特性

Preparation and luminescence properties of ${\rm Li}^+, {\rm Zn}^{2+}, {\rm Mg}^{2+}$ doped ${\rm Lu}_2{\rm O}_3$: ${\rm Er}^{3+}$ phosphors

中国光学. 2019, 12(1): 112 https://doi.org/10.3788/CO.20191201.0112

 Li^+ 、Na⁺共掺(Y_xGd_yLu_{1-x-y})₂O₃:0.5%Pr³⁺荧光粉的制备及发光特性研究

 $\label{eq:preparation} \mbox{ Preparation and luminescence properties of Li^+, Na^+ \mbox{ co-doped } (Y_x \mbox{Gd}_v \mbox{Lu}_{1-x-v})_2 \mbox{O}_3 \mbox{:} 0.5\% \mbox{Pr}^{3+} \mbox{ phosphors phosphors } (Y_x \mbox{Gd}_v \mbox{Lu}_{1-x-v})_2 \mbox{O}_3 \mbox{:} 0.5\% \mbox{Pr}^{3+} \mbox{ phosphors } (Y_x \mbox{Gd}_v \mbox{Lu}_{1-x-v})_2 \mbox{O}_3 \mbox{:} 0.5\% \mbox{Pr}^{3+} \mbox{ phosphors } (Y_x \mbox{Gd}_v \mbox{Lu}_{1-x-v})_2 \mbox{O}_3 \mbox{:} 0.5\% \mbox{Pr}^{3+} \mbox{ phosphors } (Y_x \mbox{Gd}_v \mbox{Lu}_{1-x-v})_2 \mbox{O}_3 \mbox{:} 0.5\% \mbox{Pr}^{3+} \mbox{ phosphors } (Y_x \mbox{Gd}_v \mbox{Lu}_{1-x-v})_2 \mbox{O}_3 \mbox{:} 0.5\% \mbox{Pr}^{3+} \mbox{phosphors } (Y_x \mbox{Gd}_v \mbox{Lu}_{1-x-v})_2 \mbox{O}_3 \mbox{:} 0.5\% \mbox{Pr}^{3+} \mbox{phosphors } (Y_x \mbox{Gd}_v \mbox{Lu}_{1-x-v})_2 \mbox{O}_3 \mbox{:} 0.5\% \mbox{Pr}^{3+} \mbox{phosphors } (Y_x \mbox{Gd}_v \mbox{Lu}_{1-x-v})_2 \mbox{O}_3 \mbox{:} 0.5\% \mbox{Pr}^{3+} \$

中国光学. 2019, 12(6): 1279 https://doi.org/10.3788/CO.20191206.1279

半主动激光制导能量传输与模拟技术

Semi-active laser-guided energy transmission and simulation technology 中国光学. 2019, 12(2): 256 https://doi.org/10.3788/CO.20191202.0256

高灵敏度下转换光学测温材料:NaGd(WO4)2:Yb3+/Er3+

Highly sensitive down-conversion optical temperature-measurement material: $NaGd(WO_4)_2$: Yb³⁺/Er³⁺

中国光学. 2019, 12(3): 596 https://doi.org/10.3788/CO.20191203.0596

Na5[B2P3013]晶体的紫外-远红外光谱分析

Analysis of ultraviolet-far-infrared spectra of $Na_5[B_2P_3O_{13}]$ crystal

中国光学. 2019, 12(5): 1118 https://doi.org/10.3788/CO.20191205.1118

锰离子掺杂纯无机钙钛矿纳米晶及应用

Mn²⁺-doped CsPbX₃ (X=Cl, Br and I) perovskite nanocrystals and their applications

中国光学. 2019, 12(5): 933 https://doi.org/10.3788/CO.20191205.0933

文章编号 2095-1531(2021)03-0528-08

金属离子 Bi³⁺掺杂 Lu_{1-x}O₃: x%Ho³⁺ 荧光粉的发光性能

赵海琴1,2,3, 王林香1,2,3*, 度 娟1,2,3, 叶 颖1,2,3

(1. 新疆师范大学物理与电子工程学院,新疆乌鲁木齐 830054;

2. 新疆师范大学 矿物发光及其微结构重点实验室, 新疆 乌鲁木齐 830054;

3. 新疆师范大学 新型光源与微纳米光学实验室, 新疆 乌鲁木齐 830054)

摘要:采用高温固相法制备了金属离子 Bi³⁺掺杂 Lu_{1-x}O₃: *x*%Ho³⁺系列荧光粉,研究了不同浓度 Bi³⁺掺杂 Lu_{1-x}O₃: *x*%Ho³⁺荧光粉的晶体结构、Lu₂O₃ 基质中 Bi³⁺→Ho³⁺的能量传递规律及合成粉体的发光性质。X 射线衍射结果表明 Bi³⁺、Ho³⁺掺杂对 Lu₂O₃ 的立方相结构没有影响。在 322 nm 激发波长下发射出位于 551 nm 处 Ho³⁺的⁵S₂→⁵I₈ 跃迁;在 551 nm 监测下,合成的 Ho³⁺、Bi³⁺共掺杂 Lu₂O₃ 荧光粉出现 Bi³⁺的 322 nm 特征激发峰以及 Ho³⁺的 448 nm 处的⁵I₈→⁵F₁ 跃迁。 当 Bi³⁺掺杂浓度为 1.5% 时,Bi³⁺对 Ho³⁺的能量传递最有效,比单掺 Ho³⁺样品发射强度提高了 34.8 倍。Lu_{98.5%-y}O₃:1.5%Ho³⁺, *y*%Bi³⁺(*y*=1, 1.5, 2) 样品,随着 Bi³⁺掺杂浓度增加,用 980 nm 激发比 322 nm 激发在 551 nm 处获得的光强分别提高了 13.3 倍、16.8 倍、14.2 倍。通过计算得到 Bi³⁺和 Ho³⁺之间的能量传递临界距离为 2.979 nm,且 Bi³⁺与 Ho³⁺之间的能量传递通过偶极-四极相互作用实现的。

关键 词:荧光粉;发光性能;能量传递;多极相互作用
 中图分类号:O482.31 文献标志码:A doi:10.37188/CO.2019-0222

Luminescence properties of Bi³⁺ doped Lu_{1-x}O₃: x%Ho³⁺ metal ion phosphors

ZHAO Hai-qin^{1,2,3}, WANG Lin-xiang^{1,2,3*}, TUO Juan^{1,2,3}, YE Ying^{1,2,3}

(1. College of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China;

2. Key Laboratory of Mineral Luminescence and Microstructures,

Xinjiang Normal University, Urumqi 830054, China;

3. Laboratory of Novel Light Sources and Micro/Nano-Optics,

Xinjiang Normal University, Urumqi 830054, China)

* Corresponding author, E-mail: wanglinxiang23@126. com

Abstract: Bi³⁺ doped Lu_{1-x}O₃: x%Ho³⁺ metal ion phosphors were prepared using the high-temperature solidphase method. The crystal structures of Bi³⁺ doped Lu_{1-x}O₃: x%Ho³⁺ phosphors, the Bi³⁺ \rightarrow Ho³⁺ energy transfer rule in Lu₂O₃ matrix and the luminescent properties of synthetic powders with different doping concentrations were investigated. X-ray diffraction results showed that Bi³⁺ and Ho³⁺ doping had no effect on the cubic

收稿日期:2019-11-26;修订日期:2020-01-21

基金项目:新疆维吾尔自治区自然科学基金 (No. 2017D01A60); 新疆维吾尔自治区高校科研计划 (No. XJEDU2018Y032) Supported by Natural Science Foundation of Xinjiang (No. 2017D01A60); Scientific Research Plan of Colleges and University in Xinjiang (No. XJEDU2018Y032)

phase structure of Lu₂O₃. Lu₂O₃: Ho³⁺, Bi³⁺ phosphor emitted ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$ transition of Ho³⁺ at 551 nm under an excitation wavelength of 322 nm, and exhibited ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ characteristic transition of Bi³⁺ at 322 nm and ${}^{5}I_{8} \rightarrow {}^{5}F_{1}$ transition of Ho³⁺ at 448 nm under an emission wavelength of 551 nm. When the doping concentration of Bi³⁺ was 1.5%, the effect was most effective for the energy transfer of Ho³⁺, which increased by a factor of 34.8 compared to that of the single-doped Ho³⁺ sample. For Lu_{98.5%-y}O₃:1.5%Ho³⁺, y%Bi³⁺(y=1, 1.5, 2), with the increase of Bi³⁺ ions concentration, the luminescence intensity at 551 nm under 980-nm excitation increased by a factor of 13.3, 16.8 and 14.2, respectively, compared to that of under 322-nm excitation. The energy transfer critical distance between Bi³⁺ and Ho³⁺ was calculated to be 2.979 nm, and the energy transfer between Bi³⁺ and Ho³⁺ was achieved by dipole-quadrupole interaction.

Key words: phosphor; luminescence propertie; energy transfer; multipolar interaction

1引言

稀土 Ho³⁺离子因具有特殊的阶梯状能级结 构、激发能级丰富并具有不同的激光作用机制、 且亚稳态能级寿命较长等优点,被作为激活剂掺 入基质材料,从而得到了广泛应用,该方向也是目 前激光材料领域中的研究热点之一^[1]。在合适的 基质中掺入 Ho³⁺离子,可以制成输出功率很高的 激光介质,用于光学数据存储系统、传感器、医学 诊断、三维(3D)显示系统,并作为光学放大器用 于光通信窗口,以满足互联网日益增长的需求^[24]。 相比其他基质材料,氧化物的合成对环境条件要 求低,其化学稳定性、热稳定性及力学稳定性优 良,因此选择声子能量相对较低、透光范围宽且 容易实现稀土离子掺杂的氧化镥^[5]作为基质材料 掺杂 Ho³⁺离子,使其实现更长的绿色和红色激发 能级寿命和更好的增益性能。

据报道通过共掺杂 Bi³⁺可以提高发光材料中 Re³⁺的发光强度^[6]。这归因于基质材料中 Re³⁺和 Bi³⁺ 离子之间的能量传递。由于 Bi³⁺是具有 s² 电子组 态的离子,在电偶极跃迁中, s²→sp 跃迁属于宇称 选率允许的跃迁,所以具有 s² 电子组态的离子在 紫外光区有很强的吸收带^[7],因此 Bi³⁺离子可以在 材料中充当敏化剂,而 Re³⁺离子充当激活剂。近 年来,许多研究者对 Ho³⁺、Bi³⁺共掺杂基质材料的 发光性质进行了研究,如: T. K. Visweswara Rao^[8] 采用多元醇法制备了 Bi³⁺掺杂 LaAlO₃:Ho³⁺荧光 粉,研究了其在紫外光激发下的光致发光性能,在 272 nm 的激发下,Ho³⁺的发光强度明显增强,是由 于 Bi³⁺向 Ho³⁺进行了有效能量传递,且能量传递 效率最高达到了 69%。Xu J P^[9] 报道了 LaNbTiO₆: Ho3+、Bi3+共掺杂样品中Ho3+的激发与Bi3+的发射 有很大的重叠,当 Bi3+掺入后,545 nm处的 Ho3+的 特征发射强度急剧增加了 1.8 倍, 表明 Bi³⁺可以吸 收能量并有效地转移给 Ho3+, 增加 Ho3+的 f-f 跃 迁,在Y2O3中也有相似的结果。在327nm或370nm 激发下,在Y2O3中掺杂摩尔分数为0.75%的Bi3+ 和摩尔分数为1%的 Ho3+后,其发射光谱既有 Bi3+ 的发射峰,也有 Ho³⁺的发射峰,且 LaNbTiO₆: 4%Ho³⁺,2%Bi³⁺和 Y₂O₃:0.75%Bi³⁺,0.5%Ho³⁺的 量 子效率分别为 16% 和 31%。Zeng L W^[10] 研究了 GdVO4:Ho3+荧光粉中掺入Bi3+后对发光强度和荧 光寿命的影响,以及具体的能量传递过程。在 GdVO4 基质中, Bi3+和 Ho3+之间的能量传递效率 高达 88.35%。Suresh B^[4]研究了在摩尔分数为 1.0%的 Ho₂O₃ 掺杂 PbO-SiO₂ 玻璃基础上共掺杂 不同浓度的 Bi₂O₃(摩尔分数从 0 至 9.0%)样品的 光学吸收光谱、光致发光光谱、光致发光衰减、红 外发射谱和拉曼光谱。结果表明,不含 Bi₂O₃的 玻璃的发射光谱出现了 Ho3+离子的绿色、红色以 及近红外发射,当掺入摩尔分数为 5.0% 的 Bi₂O₃ 时,绿色发射强度增强了接近3倍。本课题组[11] 利用高温固相法制备了系列 Li⁺、Bi³⁺掺杂 Lu₂O₃: Ho3+荧光粉体,发现 16%Li+掺杂、1.5%Bi3+掺杂以 及 2%Li⁺/1.5%Bi³⁺共掺的样品发光强度分别提高 了 3.0、128.9、1.4 倍。然而关于 Lu2O3 基质中 Bi³⁺→Ho³⁺能量传递规律及Bi³⁺→Ho³⁺间的相互作 用研究较少,本文合成了不同浓度 Bi³⁺掺杂 Lu₂O₃: Ho3+荧光粉,并分析了 Bi3+掺杂对合成粉体微结构 及发光性质的影响, Bi3+和 Ho3+之间的能量传递规 律以及离子间相互作用情况。

2 实 验

2.1 荧光粉的制备

前期实验中, 2%Ho³⁺掺杂、1100 ℃ 煅烧 2 h 获得的 Lu_{98%}O₃:2%Ho³⁺荧光粉发光最强。本实 验以 Lu_{98.5%}O₃:1.5%Ho³⁺为基础, 按表 1 中的摩尔 分数进行掺杂, 用 AL104 电子天平称取 Lu₂O₃、 Ho₂O₃、Bi₂O₃ 试剂, 将混合物用玛瑙研钵研磨 30 min 后, 装入石英坩埚, 放入 KSL-1400G 箱式 电阻炉在空气中以 1100 ℃ 煅烧 2 h, 加热完成 后, 取出样品在冷凝台上迅速冷却至室温, 获得 Lu₂O₃:Ho³⁺, Bi³⁺系列荧光粉。

表 1 不同摩尔分数的 Bi³⁺掺杂 Lu₂O₃:Ho³⁺荧光粉

Tab. 1 Bi³⁺ doped Lu₂O₃:Ho³⁺ phosphors at different doping concentrations

sample	Lu ₂ O ₃	Ho ³⁺	Bi ³⁺
1	98.5%	1.5%	0%
2	98.5%	0%	1.5%
3	97.5%	1.5%	1.0%
4	97.0%	1.5%	1.5%
5	96.5%	1.5%	2.0%

2.2 荧光粉的表征

采用日本岛津 XRD-6100 型粉末衍射仪对荧 光粉进行物相分析;用英国爱丁堡 FLS920 稳态/ 瞬态荧光光谱仪测量荧光粉的激发光谱、发射光 谱以及荧光寿命;使用光谱仪外接 980 nm 激光 器,测量上转换发射光谱。进行以上表征分析时 在观测光栅入口处根据实验需求放置适当的滤光 片,以消除光源杂散光和倍频峰的影响,所用的仪 器设备在实验前均进行了校正,所有测量均在室 温下进行。

3 结果与讨论

3.1 物相分析

图 1为 Lu_{1-x-y}O₃:x%Ho³⁺, y%Bi³⁺(x=0, y=1.5; x=1.5, y为 0,1,1.5, 2) 样品的 X 射线衍射 (XRD) 图谱。由图 1 可以看出, 各个衍射峰都与立方相 Lu₂O₃ 晶体的标准卡片 (JCPDS#43-1021) 的衍射 峰吻合得很好。这说明 Ho³⁺、Bi³⁺的掺杂没有引 起基质材料 Lu₂O₃ 立方晶相结构的改变。Ho³⁺(r=0.0901 nm)、Bi³⁺(r=0.096 nm)的离子半径和Lu³⁺(r=0.0861 nm)的离子半径接近,所以 Ho³⁺和 Bi³⁺进入晶格能够取代基质中 Lu³⁺的晶格位置而不改变 基质的晶体结构。

图 1 Ho³⁺、Bi³⁺掺杂 Lu₂O₃ 粉末 XRD

Fig. 1 XRD patterns of Ho³⁺ and Bi³⁺ doped Lu₂O₃ powders

Lu_{1-x-y}O₃:x%Ho³⁺, y%Bi³⁺荧光粉紫外可见 光谱的发光性能

图 2(彩图见期刊电子版)是 Lu_{98.5%}O₃:1.5%Bi³⁺ 及 Lu_{98.5%}O₃:1.5%Ho³⁺样品的激发光谱和发射光 谱。Lu_{98.5%}O₃:1.5%Bi³⁺和 Lu_{98.5%}O₃:1.5%Ho³⁺的 激发光谱(λ_{em} =491 nm)中, 200~300 nm 之间宽带 为 Lu₂O₃ 基质的吸收,其中 322 nm 是 Bi³⁺的激发 峰,源于¹S₀→³P₁跃迁;其发射光谱(λ_{ex} =322 nm) 中 490 nm 处的宽发射峰源于 Bi³⁺的³P₁→¹S₀跃 迁。Ho³⁺的激发峰位于 361、390、415、448、456、 464 nm,分别对应 Ho³⁺的⁵I₈ 基态到⁵G₂、⁵G₄、⁵G₅、 ⁵F₁、⁵G₆、³K₈激发态之间的跃迁,其发射光谱 (λ_{ex} =448 nm)包含了 Ho³⁺的 540 nm(${}^{5}F_{4} \rightarrow {}^{5}I_{8}$ 跃 迁)、551 nm(${}^{5}S_{2} \rightarrow {}^{5}I_{8}$ 跃迁)和 667 nm(${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ 跃 迁)发射峰。

通过比较 Lu_{98.5%}O₃:1.5%Bi³⁺及 Lu_{98.5%}O₃: 1.5%Ho³⁺样品激发峰和发射峰的位置,可以明显 看到 490 nm 附近的 Bi³⁺的宽发射峰(390~600 nm) 与 Ho³⁺的激发峰(范围 360~500 nm)以及 Ho³⁺的 发射峰 (540 nm 和 551 nm) 有重叠。

图 3(彩图见期刊电子版)为合成 Lu_{98.5%-y}O₃: 1.5%Ho³⁺,y%Bi³⁺(y=0,1,1.5,2)荧光粉的激发(λ_{em}= 551 nm)和发射光谱(λ_{ex}=322 nm)。551 nm 监测 下,随着 Bi³⁺掺杂浓度的增加, 322 nm 处 Bi³⁺的激 发强度先增加后降低。这是由于随着 Bi³⁺掺杂浓 度增加,吸收了能量的 Bi³⁺数量增加,获得的激发 就增强,但当 Bi³⁺掺杂过量时,离子间的能量交叉 弛豫作用增加,反而使得 Bi3+的吸收减弱。

- 图 2 Lu_{98.5%}O₃:1.5%Bi³⁺和 Lu_{98.5%}O₃:1.5%Ho³⁺样品的激 发和发射光谱
- Fig. 2 Excitation and emission spectra of Lu_{98.5%}O₃: 1.5%Bi³⁺ and Lu_{98.5%}O₃:1.5%Ho³⁺phosphor samples

图 3 Lu_{98.5%-y}O₃:1.5%Ho³⁺, y%Bi³⁺样品的激发光谱(a)和 发射光谱(b)

Fig. 3 Excitation spectra (a) and emission spectrum (b) of Lu_{98.5%-v}O₃: 1.5% Ho³⁺, y%Bi³⁺ samples

同时 448 nm 附近 Ho³⁺的激发强度先增加后降低。这是因为 Bi³⁺的宽发射峰(范围 390~600 nm) 与 Ho³⁺的激发峰 448 nm(范围 360~500 nm)重 叠,故 Bi³⁺发射的能量将会传递给 Ho³⁺,在 Ho³⁺离 子浓度不变的情况下, Ho³⁺吸收能量的大小取决 于 Bi³⁺传递给 Ho³⁺的能量。因此 448 nm 处 Ho³⁺ 的激发峰峰强度先增加后降低。

随着 Bi³⁺掺杂浓度的增加, 322 nm 处 Bi³⁺的 激发强度先增后减, 1.5%Bi³⁺掺杂时, Bi³⁺获得的 激发及发射均最强, 且与 Lu_{98.5%}O₃:1.5%Ho³⁺样品 相比, 所有掺杂了 Bi³⁺的样品在 551 nm 处的发光 均明显提高。但在 440~540 nm 内, 掺杂 1% 和 2% 的 Bi³⁺样品的发射强度基本一致, 而掺杂 1.5%Bi³⁺ 样品在 491 nm 附近发光明显减弱, 同时在 540 nm 和 551 nm 处的 Ho³⁺发光增强, 这说明 Bi³ 将吸收 的能量部分传递给了 Ho³⁺。

图 4 为 Bi³⁺与 Ho³⁺的能级以及能量传递示意 图。由前文可知,具有 s² 电子组态的离子在紫外 光区有很强的吸收带, s² 电子组态基态能级为¹S₀, sp 电子组态分裂为³P₀、³P₁、³P₂和¹P₁能级。根据 自旋选择定则¹S₀→¹P₁为唯一的允许跃迁,但基 态¹S₀ 也可跃迁到激发态³P₁。这是因为自旋-轨道 耦合过程中自旋的单态和三重态发生了混合,因 而使自旋选择定则不严格。由图 4 可见,Bi³⁺的 ³P₁→¹S₀ 跃迁的能量与 Ho³⁺的⁵S₂/⁵F₄→⁵I₈和⁵F₅→ ⁵I₈ 跃迁的能量相接近,Bi³⁺的发射能量和 Ho³⁺的 发射能量出现重叠现象,因此 Bi³⁺可以通过无辐 射过程弛豫到基态¹S₀ 的过程中将其部分能量传 递给 Ho³⁺,使得 Ho³⁺的荧光增强。

图 4 Bi³⁺与 Ho³⁺的能级以及能量传递示意图

Fig. 4 Schematic diagram of the energy levels and energy transfer of Bi^{3+} and Ho^{3+}

3.3 Lu_{1-x-y}O₃:x%Ho³⁺, y%Bi³⁺荧光粉的上转换 光谱

图 5 所示为红外激光 980 nm 激发下 Lu_{1-x-y}O₃: x%Ho³⁺, y%Bi³⁺荧光粉的上转换光谱, 并与 322 nm 激发下样品对应的发射光谱进行比较。其中, 图 5(a)为分别在 322 nm 和 980 nm 激发下, Lu_{97%}O₃: 1.5%Ho³⁺, 1.5%Bi³⁺发射光谱。实验结果表明, 980 nm 激发下所有样品均出现 551 nm 绿光发射 以及 686 nm 处的红光发射。从图 5(b)来看,980 nm 激发下的发光强度明显比 322 nm 激发下的发光 要强。980 nm 激发下,1%Bi³⁺掺杂Lu_{98.5%}O₃:1.5%Ho³⁺ 样品及1.5%Bi³⁺掺杂Lu_{98.5%}O₃:1.5%Ho³⁺样品、2%Bi³⁺ 掺杂 Lu_{98.5%}O₃:1.5%Ho³⁺样品分别比 Lu_{98.5%}O₃: 1.5%Ho³⁺样品在 551 nm 处发光增强 13.3 倍、 16.8 倍、14.2 倍。而在 322 nm 激发下出现了极大的增 强,在 322 nm 激发下几乎没有出现的红色发射峰 (687 nm)在 980 nm 激发下也出现了,在 686 nm 处的发光增强 1369.5 倍、2339.3 倍、1692.9 倍。

图 5 980 nm 及 322 nm 激发下 Lu_{1-x-y}O₃:x%Ho³⁺, y%Bi³⁺ 样品的发射光谱及强度变化

Fig. 5 Luminescence spectra and intensity changes of Lu_{1-x-y}O₃:x%Ho³⁺, y%Bi³⁺ samples at 980 nm and 322 nm excitation

本实验研究发现不同浓度 Bi³⁺掺杂 Lu₂O₃: Ho³⁺系列荧光粉在 980 nm 激发下的发光强度明 显比 322 nm 激发下的发光要强,能够更有效地实 现黄绿光发射。这是因为在长波长光的激发下, 共掺 Bi³⁺能够更好地实现 Bi³⁺的敏化作用,从而使 得发光产生增强。本实验发生的上转换机制与常 规上转换机制不同之处在于:传统使用 Yb³⁺作为 敏化剂将能量传递给稀土离子,使得稀土离子在 可见光区的发射能量增加。而本实验中 Bi³⁺替代 Yb³⁺在上转换过程中发挥了敏化作用。在近红外 光激发下, Bi³⁺在 449 nm 处得到有效激发, 被激发 的 Bi³⁺将能量传递给 Ho³⁺, 使得 Ho³⁺在可见光区 的发射能量增加^[12]。

3.4 Bi³⁺、Ho³⁺能量传递及相互作用

在 λ=322 nm 激发下, 对 Lu_{98.5%-y}O₃:1.5%Ho³⁺, y%Bi³⁺荧光粉体中 Ho³⁺的⁵S₂ 能级的荧光寿命进 行测试, 能级衰减曲线用双指数函数公式^[13-15]

$$I(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) \quad , \qquad (1)$$

进行拟合。式(1)中,*I*为任意时间的荧光强度, $A_1 和 A_2$ 为拟合参数, $\tau_1 和 \tau_2$ 为指数分量的衰减 时间,其中 τ_1 为快衰减时间, τ_2 为慢衰减时间。 拟合曲线如图 6 所示。

- 图 6 Lu_{98.5%-y}O₃:1.5%Ho³⁺,y%Bi³⁺荧光粉中 Ho³⁺的荧光衰 减曲线
- Fig. 6 Decay curves for the luminescence of Ho³⁺ in Lu_{98,5%-v}O₃:1.5%Ho³⁺, y%Bi³⁺phosphors

由平均寿命计算公式[16]

$$\tau = (A_1 \tau_1^2 + A_2 \tau_2^2) / (A_1 \tau_1 + A_2 \tau_2) \quad , \tag{2}$$

计算得到 Lu_{98.5%-y}O₃:1.5%Ho³⁺, y%Bi³⁺样品中 Ho³⁺的荧光寿命。

Lu_{98.5%-y}O₃:1.5%Ho³⁺,y%Bi³⁺(y=0, 1, 1.5, 2)荧 光粉体中 Ho³⁺的荧光寿命依次为 57.82, 61.80, 63.99, 65.40 μs, Ho³⁺的荧光寿命在随着 Bi³⁺掺杂 浓度的增加而逐渐延长, 这表明 Bi³⁺将能量传递 给了 Ho³⁺, 从而延长了 Ho³⁺的⁵S₂ 能级寿命。

激子能级寿命取决于电子的辐射跃迁速率 W_R和无辐射跃迁速率 W_{NR},即:

$$\tau = \frac{1}{W_{\rm R} + W_{\rm NR}} \quad . \tag{3}$$

其中, WR 与晶场密切相关, 受发光中心离子周围

晶格和配位数的影响较大;而 W_{NR} 受温度的影响 较大。从式(3)可知:若寿命增加,则 W_R和 W_{NR} 的总和减小。另一方面发光的荧光强度可由式(4) 决定:

$$I \propto \frac{W_{\rm R}}{W_{\rm R} + W_{\rm NR}} \quad . \tag{4}$$

根据实验结果可知:随着 Bi³⁺掺杂浓度的增加,荧光粉的发光强度随之增强,而激子寿命也在随之延长,反映出电子的辐射跃迁速率 *W*_{NR} 在逐渐减小。由此可知,辐射复合速率随 Bi³⁺掺杂浓度的增加而逐渐减小。

稀土离子间的能量传递一般为再吸收辐射能 量传递和无辐射共振能量传递^[17]。其中,共振能 量传递通常有两种传递方式:一种为交换相互作 用,另一种为电多极相互作用^[18-21]。交换相互作 用通常发生在禁带跃迁中,如果能量传递由交换 作用引起,则要求敏化剂和激活剂之间的临界距 离小于 0.5 nm^[22-23]。对Lu_{98.5%-y}O₃:1.5%Ho³⁺,y%Bi³⁺ 样品,Bi³⁺/Ho³⁺在Lu₂O₃基质中发生浓度猝灭的 临界距离可由 Blasse 提出的浓度猝灭公式^[24-27] 计算:

$$R_{\rm c} = 2 \left(\frac{3V}{4\pi X_{\rm c} N} \right)^{\frac{1}{3}} \quad , \tag{5}$$

式(5)中, R_c 为 Bi³⁺到 Ho³⁺能量传递的临界距离, V为晶胞体积, X_c 是临界浓度, N 为晶胞中可被激 活剂离子占据的晶格配位数。对于 Lu₂O₃ 基质, $V=1.12262 \text{ nm}^3$, N=6。在 Lu_{98.5%-y}O₃:1.5%Ho³⁺, y%Bi³⁺样品中,临界浓度 X_c 为 1.5%,将以上数值 代入式(5)中,计算得能量传递临界距离 $R_c=$ 2.979 nm>0.5 nm。因此, Bi³⁺→Ho³⁺之间的能量传 递不是短距离的交换作用, 而是以电多极交换作 用方式进行。根据 Dexter 能量传递理论和 Reisfeld 近似值法, Bi³⁺→Ho³⁺之间的能量传递类型可 由式^[28-30](6)计算:

$$\frac{\eta_{s_0}}{\eta_s} \propto C^{\frac{n}{3}} \quad , \tag{6}$$

式(6)中 η_{s_0} 和 η_s 分别表示有无 Bi³⁺离子掺杂时荧光 粉的量子效率, C 为掺杂浓度, n 为多极相互作用 的特征系数, n=6、8、10 分别对应偶极-偶极、偶 极-四极、四极-四极相互作用。而 $\frac{\eta_{s_0}}{\eta_s}$ 的比值近似 等于荧光积分强度 $\frac{I_{s_0}}{I_s}$ (I_{s_0} 表示无 Bi³⁺离子掺杂时 荧光粉的发射强度, I_s 表示 Bi³⁺、Ho³⁺共掺杂时荧 光粉的发射强度)的比值,即得到[³¹]:

$$\frac{I_{s_0}}{I_s} \propto C^{\frac{n}{3}} \quad , \tag{7}$$

根据式(7)计算, *I*_{so}/*I*_s与 *C*^{n/3} 的关系如图 7 所示, *R*² 为相关系数。从图 7 中可以看出, 当 *n*=8 时, *I*_{so}/*I*_s 与 *C*^{n/3} 间的线性关系最好, 表明在 Lu₂O₃ 基质中, Bi³⁺与 Ho³⁺之间的能量传递是通过多极相 互作用中的偶极-四极相互作用来实现的。

- 图 7 Lu_{98.5%-y}O₃:1.5%Ho³⁺, y%Bi³⁺荧光粉中Ho³⁺的I_{s0}/I_s与 (C_{Bi}+C_{Ho})⁶³, (C_{Bi}+C_{Ho})⁸³和 (C_{Bi}+C_{Ho})^{10/3}关系曲线
- Fig. 7 Dependence I_{s_0}/I_s of Ho³⁺ on $(C_{Bi}+C_{Ho})$ ^{6/3}, $(C_{Bi}+C_{Ho})$ ^{8/3} and $(C_{Bi}+C_{Ho})$ ^{10/3} in Lu_{98.5%-y}O₃: 1.5%Ho³⁺, y%Bi³⁺ phosphor

4 结 论

本文采用高温固相法制备了不同浓度的 Bi3+ 掺杂 Lu₂O₃:Ho³⁺荧光粉,并对合成粉体微结构、发 光性质及能级寿命进行了研究。研究结果表明: Bi³⁺掺杂对Lu₂O₃立方相的主要结构基本无影 响。在 322 nm 激发下, Lu₂O₃:Ho³⁺,Bi³⁺荧光粉在 551 nm 处 Ho3+的发射强度随着 Bi3+掺杂浓度的 增加而增强,490 nm 处 Bi3+的发射强度在逐渐降 低,当Bi3+掺杂浓度为1.5%时,Bi3+对Ho3+的能量 传递最有效,发光强度比单掺 Ho3+高 34.8 倍。在 980 nm 激发下的发光强度明显比 322 nm 激发下 的发光强。980 nm 激发下, 1%Bi3+掺杂、1.5%Bi3+ 掺杂、2%Bi³⁺掺杂Lu_{98.5%}O₃:1.5%Ho³⁺样品在551nm 处发光比在 322 nm 激发下分别增强了 13.3 倍、 16.8 倍、14.2 倍, 在 322 nm 激发下几乎没有出现 的红色发射峰,在980 nm 激发下却出现了极大的 增强,通过对比,在 686 nm 处的发光分别增强了

1369.5 倍、2339.3 倍、1692.9 倍。通过计算得到 Bi³⁺和 Ho³⁺之间的能量传递临界距离为 2.979 nm,

参考文献:

- [1] 贾玉涛.稀土离子 Ho³⁺掺杂氧化物上转换光致发光的研究[D].苏州:苏州大学, 2010.
 - JIA Y T. Study on up-conversion photo luminescence of rare earth ions Ho³⁺ doped oxides[D]. Suzhou: Soochow University, 2010. (in Chinese)
- [2] FENG L, WU Y S. Optical transitions of Ho³⁺ in oxyfluoride glasses and upconversion luminescence of Ho³⁺/Yb³⁺ codoped oxyfluoride glasses[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 142: 232-238.
- [3] BHARGAVI K, RAO M S, SUDARSAN V, et al.. Influence of Al³⁺ ions on self up-conversion in Ho³⁺ doped lead silicate glasses[J]. Optical Materials, 2014, 36(7): 1189-1196.
- [4] SURESH B, ZHYDACHEVSKII Y, BRIK M G, et al.. Amplification of green emission of Ho³⁺ ions in lead silicate glasses by sensitizing with Bi³⁺ ions[J]. Journal of Alloys and Compounds, 2016, 683: 114-122.
- [5] 李新跃,邓建国,刘东亮.氧化物掺杂稀土的上转换材料研究进展[J]. 信阳师范学院学报:自然科学版,2011, 24(3):414-420.

LI X Y, DENG J G, LIU D L. Research progress of upconversion materials of oxide matrix with doped rare earths [J]. *Journal of Xinyang Normal University: Natural Science Edition*, 2011, 24(3): 414-420. (in Chinese)

- [6] 李佳钰. Bi³⁺和几种稀土离子掺杂新型发光材料的合成及性质研究[D]. 沈阳: 沈阳师范大学, 2018. LI J Y. Study of the synthesis and luminescent properties of Bi³⁺ and several rare earth ions doped new optical materials[D]. Shenyang: Shenyang Normal University, 2018. (in Chinese).
- [7] 郭如旺, 郭常新. Lu₂O₃: Bi³⁺粉末晶体发光性能的研究[J]. 中国稀土学报, 2007, 25(5): 533-539.
 GUO R W, GUO CH X. Luminescent properties of nano- and submicron-crystal Lu₂O₃: Bi³⁺[J]. *Journal of the Chinese Rare Earth Society*, 2007, 25(5): 533-539. (in Chinese)
- [8] RAO T K V, KAMAL C S, SAMUEL T, et al.. Color tunable luminescence from LaAlO₃: Bi³⁺, Ho³⁺ doped phosphors for field emission displays[J]. Journal of Materials Science: Materials in Electronics, 2017, 29(2): 1011-1017.
- [9] XUE J P, WANG X F, JEONG J H, et al.. Spectral and energy transfer in Bi³⁺–Reⁿ⁺ (n = 2, 3, 4) co-doped phosphors: extended optical applications[J]. *Physical Chemistry Chemical Physics*, 2018, 20(17): 11516-11541.
- [10] ZENG L W, LIU Y, LIN B H, et al.. Rational design of Bi³⁺/Ln³⁺: GdVO₄ (Ln=Eu, Sm, Dy, Ho) nanophosphor: synthesis, characterization and color-tunable property[J]. *Optical Materials*, 2018, 77: 204-210.
- [11] 赵海琴, 王林香, 庹娟, 等. Li⁺/Bi[→]掺杂Lu₂O₃: Ho³⁺荧光粉的制备及其发光特性[J]. 激光与光电子学进展, 2018, 55(8):081602.

ZHAO H Q, WANG L X, TUO J, *et al.*. Preparation and luminescent properties of Li⁺/Bi³⁺ co-doped Lu₂O₃: Ho³⁺ phosphors[J]. *Laser & Optoelectronics Progress*, 2018, 55(8): 081602. (in Chinese)

[12] 肖全兰, 孟建新, 谢丽娟, 等. Bi³⁺掺杂对YVO₄: Yb³⁺近红外发光的敏化作用[J]. 物理化学学报, 2011, 27(10): 2427-2431.
 XIAO Q L, MENG J X, XIE L J, *et al.*. Near-infrared luminescence enhancement by co-doped Bi³⁺ in YVO₄: Yb³⁺[J].

Acta Physico-Chimica Sinica, 2011, 27(10): 2427-2431. (in Chinese)

- [13] KHAN W, ZHOU L LIANG, et al.. Luminescence enhancement and energy transfers of Ce³⁺ and Sm³⁺ in CaSrSiO₄ phosphor[J]. Journal of Materials Chemistry C, 2018, 6(28): 7612-7618.
- [14] TAO ZH X, TSUBOI T, HUANG Y L, et al.. Photoluminescence properties of Eu³⁺-doped glaserite-type orthovanadates CsK₂Gd[VO₄]₂[J]. *Inorganic Chemistry*, 2014, 53(8): 4161-4168.
- [15] XIA ZH G, MIAO SH H, CHEN M Y, et al.. Structure, crystallographic sites, and tunable luminescence properties of Eu²⁺ and Ce³⁺/Li⁺-activated Ca_{1.65}Sr_{0.35}SiO₄ phosphors[J]. *Inorganic Chemistry*, 2015, 54(16): 7684-7691.
- [16] GUO Q, WANG Q, JIANG L, et al.. A novel apatite, Lu₅(SiO₄)₃N: (Ce, Tb), phosphor material: synthesis, structure and applications for NUV-LEDs[J]. *Physical Chemistry Chemical Physics*, 2016, 18(23): 15545-15554.
- [17] 胡莲莲,艾尔肯·斯地克,万英,等. Dy³⁺、Tm³⁺共掺杂Ca₂MgSi₂O₇的发光特性[J]. 发光学报, 2018, 39(7): 948-954. HULL, AIERKENS, WANY, *et al.*. Luminescent properties of Dy³⁺, Tm³⁺ co-doped Ca₂MgSi₂O₇[J]. *Chinese Journal*

of Luminescence, 2018, 39(7): 948-954. (in Chinese)

- [18] DEXTER D L, SCHULMAN J H. Theory of concentration quenching in inorganic phosphors[J]. Journal of Chemical Physics, 1954, 22(6): 1063-1070.
- [19] ZHOU H P, JIN Y, JIANG M S, et al.. A single-phased tunable emission phosphor MgY₂Si₃O₁₀: Eu³⁺, Bi³⁺ with efficient energy transfer for white LEDs[J]. *Dalton Transactions*, 2015, 44(3): 1102-1109.
- [20] 杨国辉,陈凯, 王小军,等. 基质组成变化及电荷补偿对NaM₄(VO₄)₃: Eu³⁺(M=Mg, Ca)荧光性能的调控[J]. 发光学报, 2019, 40(6): 725-734.
 YANG G H, CHEN K, WANG X J, *et al.*. Controlling emissions of NaM₄(VO₄)₃: Eu³⁺(M=Mg, Ca) phosphor by adjusting base composition and charge compensation[J]. *Chinese Journal of Luminescence*, 2019, 40(6): 725-734. (in Chinese)
- [21] 糜万鑫,曹丽丽,楚司祺,等.绿色荧光粉Sr₃P₄O₁₃: Ce³⁺, Tb³⁺的发光特性及Ce³⁺→Tb³⁺能量传递机理[J]. 光学学报, 2019, 39(8): 0816002.

MI W X, CAO L L, CHU S Q, *et al.*. Luminescence properties and energy transfer mechanism of $Sr_3P_4O_{13}$: Ce³⁺, Tb³⁺ green phosphors[J]. *Acta Optica Sinica*, 2019, 39(8): 0816002. (in Chinese)

[22] 于汀,高明燕,宋岩,等. Dy³⁺, Eu³⁺共掺的LiGd(MoO₄)₂单一相荧光粉的合成、发光及能量传递[J]. 无机化学学报, 2018, 34(5): 857-863.
 YU T, GAO M Y, SONG Y, *et al.*. Synthesis, luminescence and energy transfer of Dy³⁺ and Eu³⁺ co-doped

LiGd(MoO₄)₂ single-phase phosphors[J]. *Chinese Journal of Inorganic Chemistry*, 2018, 34(5): 857-863. (in Chinese) [23] 苏小娜,万英,周芷薹,等. Na₂CaSiO₄: Sm³⁺, Eu³⁺荧光粉的发光特性和能量传递[J]. 物理学报, 2017, 66(23):

230701.
 SU X N, WAN Y, ZHOU ZH X, et al.. Luminescence properties and energy transfer of Na₂CaSiO₄: Sm³⁺, Eu³⁺ phosphor[J]. Acta Physica Sinica, 2017, 66(23): 230701. (in Chinese)

[24] BLASSE G. Energy transfer in oxidic phosphors [J]. *Physics Letters A*, 1968, 28(6): 444-445.

- [25] XIE A, YUAN X M, SHI Y, et al.. Photoluminescence characteristics of energy transfer between Eu³⁺ and Bi³⁺ in LiEu_{1-x}Bi_x (WO₄)_{0.5}(MoO₄)_{1.5}[J]. Journal of the American Ceramic Society, 2009, 92(10): 2254-2258.
- [26] 陈彩花,杨国辉,梁利芳,等.溶胶凝胶法合成CaYAlO4: Mn⁴⁺红色荧光粉及其荧光性能研究[J].发光学报,2017, 38(5):567-573.

CHEN C H, YANG G H, LIANG L F, *et al.*. Luminescent properties of CaYAlO₄: Mn⁴⁺ red phosphors prepared by solgel method[J]. *Chinese Journal of Luminescence*, 2017, 38(5): 567-573. (in Chinese)

- [27] ZHANG Y, GONG W T, YU J J, et al.. Multi-color luminescence properties and energy transfer behaviour in hostsensitized CaWO₄: Tb³⁺, Eu³⁺ phosphors [J]. RSC Advances, 2016, 6(37): 30886-30894.
- [28] REISFELD R, LIEBLICH-SOFFER N. Energy transfer from UO₂²⁺ to Sm³⁺ in phosphate glass [J]. *Journal of Solid State Chemistry*, 1979, 28(3): 391-395.
- [29] HUANG C H, CHEN T M. A novel single-composition trichromatic white-light Ca₃Y(GaO)₃(BO₃)₄: Ce³⁺, Mn²⁺, Tb³⁺ phosphor for UV-light emitting diodes[J]. *The Journal of Physical Chemistry C*, 2011, 115(5): 2349-2355.
- [30] JHA K, JAYASIMHADRI M. Effective sensitization of Eu³⁺ and energy transfer in Sm³⁺/Eu³⁺ co-doped ZPBT glasses for CuPc based solar cell and w-LED applications[J]. *Journal of Luminescence*, 2018, 194: 102-107.
- [31] PAULOSE P I, JOSE G, THOMAS V, *et al.*. Sensitized fluorescence of Ce³⁺/Mn²⁺ system in phosphate glass[J]. *Journal of Physics and Chemistry of Solids*, 2003, 64(5): 841-846.

作者简介:

赵海琴(1995—),女,甘肃金昌人,硕 士,2020年于新疆师范大学获得硕士 学位,主要从事纳米发光材料的制备 及其性能研究。E-mail:zhq0928@mail. ustc.edu.cn

王林香(1979—), 女, 甘肃秦安人, 博 士, 副教授, 2010 年于中国科学技术 大学获得博士学位, 主要研究纳米发 光材料。E-mail: wanglinxiang23@126. com