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Abstract: The technology of enhancing fluorescence emission can increase the sensitivity of fluorescence de-
tection and the brightness of Light Emitting Diodes (LEDs), and is of great significance in improving the per-
formance of light-emitting devices. Since the metal structure has a good effect in enhancing the local field
and fluorescence emission, and the flexible dielectric material has flexible bendability characteristics, on the
basis of above, we propose a flexible structure composed of Metal-Dielectric-Metal (MDM) to enhance the
fluorescence emission. The influence of the structure on the directional emission enhancement of quantum
dots is systematically studied by using the finite difference time domain method. Theoretical calculations
show that the local undulations and arcs of the flexible MDM structure can promote fluorescence enhance-
ment and increase the quantum efficiency of the quantum dots located at the center of the structure by about 7
times. They can alao change the refractive index and thickness of the dielectric to achieve the tunability of the
target wavelength. At the same time, the experimental results shows that the flexible MDM structure does
have a positive effect on the fluorescence enhancement. This discovery is valuable for future display techno-
logies and flexible light-emitting devices. It is of certain guiding significance for the development and applic-

ation of high-efficiency flexible devices.
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1 Introduction

With the well-known advantages such as high
sensitivity and adjustable spectrum, fluorescence
emission has made rapid development in optical
imaging, biosensing, LED display and other fields.
In particular, flexible LED has been widely used in
display devices (such as foldable mobile phones,
curved televisions and flexible e-books), flexible
light sources and wearable devices due to its bend-
ability, low structural cost, light weight, conveni-
ence and good performance. For example, in 2011,
Wang et al. proposed an efficient OLED based on a
flexible substrate, achieving an external quantum ef-
ficiency of up to 60% for green fluorescence!l. In
2013, Kim et al. proposed an OLED that could be
used in wearable displays and could still have cer-
tain stability even with a bending radius of 5 mm
after 1000 bending cycles?. In 2020, Shan et al.
proposed a wearable and tonable perovskite lumin-
escence/detection fiber with the narrowest lumines-
cence spectrum of ~19 nm, which could simultan-
eously transmit and receive signals®.

However, traditional fluorescence emission

still has some limitations. For example, the fluores-

doi: 10.37188/C0.2021-0084

cence dependent on spontaneous photon emission is
isotropic in all directions, which means that the
fluorescence property is basically independent of the
observation direction, resulting in a low quantum
yield of fluorescence emission. For the fluorophore
with low quantum yield, further enhancing the fluor-
escence emission can significantly improve the per-
formance of relevant optical system (such as sens-
ing sensitivity, imaging quality, luminance and sta-
bility)“*®. Therefore, in order to improve the fluores-
cence emission efficiency in practical applications
and meet the miniaturization requirement for mod-
ern fluorescence devices, it is very important to con-
trol the emission direction in a cost-effective way
and convert the original isotropic emission into dir-
ectional emission. This research has also attracted
considerable attention in recent years and is of great
value to optical sensors, displays and light-emitting
devicest..

Previous work has proved that the fluores-
cence coupled with metal nanostructures ', metal
films™ and photonic crystals!"'"'?! can enhance direc-
tional fluorescence emission. The fluorescence
coupled with plasma substrate is enhanced by strong

local field enhancement and surface plasmon reson-
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ance. The fluorescence coupled with photonic crys-
tals is enhanced due to photonic band structure ef-
fect. The radiation of a fluorophore coupled with
surface plasma resonance can be enhanced by ap-
plying a grating or fishnet structure on the metal
layer or using a metal bilayer (silver-gold). In 2014,
Jiang et all”! designed a subwavelength Ag-
PMMA-Ag cavity structure with a 1D-period Ag
grating at the top. By using the coupling effect in
the structure and changing the dielectric thickness,
grating period, groove width and depth and other
structural parameters, the Full Width at Half Max-
imum (FWHM) of the fluorescence emission spec-
trum of the dye molecule became the narrowest and
the fluorescence intensity became the maximum. In
2018, Ren et al.l'" designed and studied the fluores-
cence emission process of metal-dielectric-metal
(MDM) fishnet metasurface structure, using the
magnetic plasmons generated by the coupling effect
between metal elements and arrays at the nanomet-
er scale to control the wavelength of enhanced fluor-
escence and achieve the color-controlled wavelength
tunability. However, the fabrication process of these
structures is more complicated. It is still worth fur-
ther research to obtain high directional fluorescence
emission enhancement based on a simple fabrica-
tion process.

The MDM structure can effectively change the
fluorescence emission characteristics by changing
the quantum yield and directivity of fluorescence
emission'l. For a specific dielectric layer thickness,
the coupling of fluorescence with Fabry-Perot cav-
ity can cause fluorescence to be emitted in a direc-
tion perpendicular to the MDM structure™ ', In
2016, Shiekh et al." proposed a planar MDM struc-
ture that used Surface Plasmon Coupled Emission
(SPCE) to enhance single-molecule luminescence
and increased the peak intensity and power of
SPCE. In 2015, Sharmistha et al.'®! designed a
planar MDM structure to control the fluorescence
wavelength, angle dependence and emission polariz-

ation by changing the thickness of metal layer and

dielectric medium. However, these structures are
planar structures and are not applicable to flexible
displays or light-emitting devices. Based on this, it
is of great significance to proposing a relatively
simple structure that can be applied to flexible dis-
plays or light-emitting devices.

Since the planar MDM structure can obtain the
fluorescence emission perpendicular to its surface,
this paper proposes a flexible MDM structure, in
which the interaction between Fabry-Perot cavity
and fluorescence can also produce the beam emis-
sion perpendicular to the structural surface to en-
hance the directional transmission of flexible light-
emitting devices. In this work, the effects of differ-
ent structural parameters on the fluorescence emis-
sion of quantum dots were studied to obtain the
structural parameters that could achieve good coup-
ling. Then, the structural parameters were com-
pared with those of metal-dielectric structure and
monolayer metal film structure. The results show
that the local undulations and arcs of MDM struc-
ture can promote fluorescence enhancement in two
ways, namely enhancing the quantum efficiency and
obtaining highly directional fluorescence emission.
Finally, the applicability of the structure in flexible
fluorescence enhancement was verified by experi-

ments.

2 Model and methodology

In order to verify the applicability of flexible
MDM structure in flexible light-emitting devices,
we proposed a flexible MDM structure, whose 3D
front view is shown in Figure 1 (Color online). The
minimum internal radius of the structure is defined
as R, the thicknesses of the silver film in the upper
and lower layers are both d|, the thickness of the
dielectric in the middle layer is d,, and the central
angle corresponding to the structure is 6. The complex
refractive index of silver comes from Palik Hand-
book!", and the fixed refractive index of polyvinyl

alcohol (PVA) material is set as 1.52. The geomet-
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ric center of the dielectric layer in the structure is set
as the origin O, through which the horizontal axis is
x and the vertical axis is y. The whole structure is
placed in an air background (n=1).

The Finite Difference Time Domain (FDTD)
method was used to simulate the MDM structure
and calculate the fluorescence enhancement when
the structure was coupled with a dipole light source
(which could represent fluorescent molecules or
quantum dots). The dipole light source is located at
the origin O, the simulation region is [x, y]=
[-2.1:2.1,-1.6:5.0] pm, and the boundary condi-
tions in both x and y directions are Perfect Match-
ing Layers (PML). One of the important factors af-
fecting the quantum efficiency of fluorescent sub-
stances is radiation attenuation rate, which is posit-
ively correlated with the quantum efficiency of
fluorescent molecules. The higher the radiation at-
tenuation rate is, the higher the quantum yield of
fluorescent molecules will be. In order to analyze
the influence of MDM structure on fluorescence
emission, the Purcell factor F is introduced to quant-
itatively represent the radiation attenuation rate of

fluorescent molecules. Its mathematical definition is

20-21].

shown in Formula (1)f

Fig. 1 Schematic diagram of the MDM structure model

composed of silver and PVA, in which: the orange

area represents the silver film with a thickness of d;;

the blue area represents the dielectric PVA with a

thickness of d,, the inner radius of the upper silver

film is R, and the central angle corresponding to the
structure is 0
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where [,4 represents the radiation attenuation rate
in the presence of the Hexible MDM structure, P4
represents the power radiated to the far field in the
presence of the Hexible MDM structure, and I,
and P°, represent the radiation attenuation rate and
the power radiated to the far field respectively in the

absence of flexible MDM structure.

3 Results and discussion

3.1 Enhancement of quantum dot emission in
different oscillation directions by MDM
structure
In a uniform medium, the luminescence of

quantum dots is isotropic. Several typical polariza-

tion states are usually selected for theoretical analys-
is. In this paper, we first studied the effect of

quantum dots in three polarization states (x, y and z)

on the fluorescence emission enhancement of

quantum dots in a MDM structure. The minimum
internal radius of the MDM structure is R=450 nm,
the thickness of Ag film is ;=50 nm, the thickness
of dielectric PVA layer is 120 nm, and the central
angle corresponding to the structure is 6=60°. The
fluorescence enhancement curves of the MDM
structure coupled with the quantum dots in different
polarization states were obtained by simulation cal-
culation. As can be seen from the power curves
shown in Fig. 2(a), the far-field fluorescence emis-
sion power of quantum dots in the y-polarization
state is small and its curve has no significant
change, indicating that this structure has little influ-
ence on the fluorescence emission of quantum dots
in the y-polarization state. At the same time, com-

pared with the oscillation of quantum dots in the y

direction, the oscillation in the x and z directions can

achieve higher fluorescence enhancement and an
obvious fluorescence emission peak. And when the
quantum dots are in the x-polarization state, the

fluorescence emission peak is the maximum. Be-



148 DA

15%

cause the fluorescence radiation distribution is per-
pendicular to the MDM structure when the oscila-
tion in the x and z directions, the interaction between
fluorescence and the structure is enhanced. The
coupling between fluorescence and structure model

has increased the fluorescence power in the far field.

45

In order to more intuitively analyze the physical
mechanism of the interaction between the structure
and the quantum dots in different polarization states,
we obtained the electric field profiles of the x-y
plane at 515 nm wavelength in three polarization

states, as shown in Figure 2 (b—d) (Color online).
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(a) Power curves in different polarization states, the inset shows the oscillation
of the dipole source in different polarization states
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Fig. 2 (a) Power curves of quantum dots in different polarization states; (b—d) electric field profiles of quantum dots in

different polarization states at 515 nm wavelength
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It can be seen from the electric field profiles
that the far-field electric field can be enhanced by
the polarization of the dipole light source in the x
and z directions. Therefore, it can be concluded that
when the radiation direction of quantum dots is per-
pendicular to the MDM structure, the MDM struc-
ture will be coupled with fluorescence emission to
enhance the directional emission of the quantum

dots, and a more obvious fluorescence enhancement

effect will be yielded in the x-polarization state.

Therefore, in the following research, we will select

the quantum dots in the x-polarization state for re-

search and analysis.

3.2 Effects of the MDM structure with different
central angles on fluorescence emission
Based on the above study, we know that the

MDM structure will produce different fluorescence

enhancement effects when coupled with the
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quantum dots in different polarization states. Next,
we study the effect of different arc lengths corres-
ponding to the changing central angle on fluores-
cence emission. Here, we compared and analyzed
the MDM structures with the central angle 6 ran-
ging from 0° to 180°. Seven values were selected
with 30° as the step size, and other parameters re-
mained unchanged. The power curves and radiation
attenuation rate curves were obtained through nu-
merical simulation, as shown in Figure 3 (Color on-
line). As can be seen from Figure 3(a), compared
with the fluorescence emission of quantum dots in
the bare light source (corresponding to the central
angle of 0°) and in the flexible PVA substrate, the
MDM structure demonstrates good far-field fluores-
cence enhancement effect at different central angles.
This finding indicates that the non-planar flexible
structure has stable performance in enhancing the
fluorescence emission. In addition, when the central
angle corresponding to the structure is 60°, the far-
field fluorescence peak is the maximum so that the
optimal luminescence enhancement effect can be
achieved. As can be seen from Figure 3(b), the radi-
ation attenuation rate (Purcell factor) of the MDM
structure coupled with fluorescent QDs has a signi-
ficant peak in the wavelength range of 450—550 nm,
indicating that the fluorescence emitted by the di-
pole light source resonates in the FP cavity of the
MDM structure and achieves about 5.3 times of

fluorescence enhancement.

45
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Fig. 3 Power curves and Purcell factors of quantum dots

for the MDM structures with different center angles
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3.3 Effects of the MDM structures with different

radius on fluorescence emission

Then we analyzed the effect of radius on fluor-
escence enhancement, which is another factor af-
fecting the arc length. The central angle correspond-
ing to the structure was 6=60°. The MDM struc-
tures with the minimum internal radius R ranging
from 350 nm to 750 nm were compared and ana-
lyzed. Five values were selected with the step size
of 100 nm, and other parameters remained un-
changed. The obtained power curves and radiation
attenuation rate curves are shown in Fig. 4 (Color
online). As can be seen from the power curves in
Figure 4(a), compared with the quantum dot emis-
sion in the flexible PVA substrate, all the MDM
structures have an emission peak in the waveband of
450-550 nm. Compared with the planar structure
with an infinite radius, the flexible MDM structure
will enhance the far-field fluorescence intensity.
When the internal radius of the structure is 450 nm,
the power peak value reach the maximum. With the
increase of the internal radius, the fluorescence
emission peak will be slightly red-shifted, because
the structure with a smaller size can be easily
coupled with short-wavelength fluorescence emis-
sion to achieve fluorescence enhancement. This also
indicates that the different bending radians of the
MDM structures used in flexible light-emitting
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devices will slightly affect the wavelength of fluor-
escence enhancement. This result provides theoret-
ical guidance for the research and development of
flexible light-emitting devices based on MDM struc-
tures. As can be seen from the radiation attenuation
rate curves in Figure 4(b), when the MDM structure
is coupled with fluorescent quantum dots, the radi-
ation attenuation rate has an obvious peak; when the
structure radius is 450 nm, the radiation attenuation

rate reach its maximum.

45
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Fig. 4 Power curves and Purcell factors of quantum dots

for the MDM structures with different radii
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3.4 Effects of the MDM structures with different
dielectric thicknesses and refractive indexes
on fluorescence emission

Through the above study, it can be concluded
that when the internal radius of the structure is

450 nm, FP cavity mode can be best coupled with

quantum dot fluorescence to increase the fluores-

cence enhancement factor of quantum dots. To
explore the specific influence of intermediate die-
lectric thickness and refractive index variation on
the tunability of fluorescence emission wavelength,
we first compared and analyzed the MDM struc-
tures with intermediate dielectric thickness d,
varying from 100 nm to 140 nm. Six values were se-
lected with 10 nm as the step size. The central angle
corresponding to the structure was 6=60°, and the
internal radius of the structure was 450 nm. Other
parameters remained the same. As shown in
Figure 5(a) (Color online), the fluorescence emis-
sion peak of the structure will be red-shifted with
the increase of intermediate dielectric layer thick-
ness. The far-field fluorescence emission peak reach
its maximum when the dielectric layer thickness is

115 nm.
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Fig. 5 Luminous power curves of quantum dots for the
MDM structures with different dielectric layer
thicknesses and refractive indexes
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By using this characteristic, the MDM struc-
tures with different dielectric thicknesses can be
coupled with different fluorescence emission
wavelengths of quantum dots to achieve the flexible
tunability of directional emission enhancement of
the fluorescence in different target colors. Secondly,
we studied the fluorescence emission power when
the MDM structures with different dielectric refract-
ive indexes were coupled with quantum dots. The
obtained results are shown in Figure 5(b) (Color on-
line). It can be seen that, the change of refractive in-
dex of intermediate dielectric layer in the MDM
structure has little influence on fluorescence en-
hancement effect. With the increase of refractive in-
dex of the intermediate layer, the fluorescence peak
is continuously red-shifted and reduced slightly.

3.5 Effects of the MDM structures with differ-
ent silver-film thicknesses on fluorescence
emission
Through the study of the influence of the above

multiple structural parameters on fluorescence emis-

sion, it can be concluded that the central angle and
internal radius of the structure have a certain influ-
ence on the value of fluorescence emission peak,
whose position, however, mainly depends on the re-
fractive index and thickness of intermediate dielec-
tric layer of the structure. Next, we studied the ef-
fects of different upper and lower silver film thick-
nesses on fluorescence emission. We compared and
analyzed the MDM structures with silver film thick-
ness d; changing from 20 nm to 60 nm. Five values
were selected with the step size of 10 nm, the cent-
ral angle corresponding to the structure was 6=60°,
the minimum internal radius of the structure was

450 nm, and the thickness of intermediate dielectric

layer was 115 nm. Other parameters remained un-

changed. The results are shown in Figure 6

(Color online). When the thickness of upper and

lower silver films is 40 nm and the wavelength is

490 nm, the far-field fluorescence peak reach the

maximum.
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Fig. 6 Luminous power curves and Purcell factors of
quantum dots for the MDM structures with different
upper and lower silver film thicknesses
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3.6 Effects of metal and metal-dielectric struc-

tures on fluorescence emission

In order to receive highly directional outgoing
light from quantum dots, we designed an MDM
arc structure with an internal radius R=450 nm, a
central angle 60°, an upper/lower silver film thick-
ness d;=40 nm and a dielectric layer thickness d, =
115 nm. In order to study the directional fluores-
cence emission effect of this structure, we comparat-
ively studied the far-field fluorescence-induced
electric field distribution of M, MD and MDM are
structures at the central wavelength of 490 nm, and
obtained the results as shown in Figure 7(a)—7(c)
(Color online). It can be found that compared with
M and MD nanostructures, the flexible MDM struc-
ture can achieve stronger far-field fluorescence en-
hancement and highly directional emission. The far-

field power curves and Purcell enhancement curves
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of flexible M, MD and MDM structures are shown
in Fig. 7(d)-7(e) (Color online). It can be found that
compared with flexible M and MD structures, the
far-field power of flexible MDM structure is signi-
ficantly enhanced. As can be seen from Figure 7e,
the radiation attenuation rate of MDM structure at

490 nm wavelength increases by a factor of about 7,

indicating that the use of this structure can enhance
the fluorescence quantum efficiency by a factor of
about 7. Compared with M and MD structures, the
MDM structure can effectively enhance and direc-
tionally modulate the fluorescence emission due to

the excellent characteristics of its FP cavity.
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Fig. 7 The electric field distribution diagrams, power curves and Purcell factors for quantum dots in metal-dielectric-metal

structure, metal-dielectric structure and metal structure at 490 nm wavelength
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3.7 Effects of adjacent dipole light sources on
fluorescence emission
Due to the relatively large structural size of the
actual flexible light-emitting devices and the large
number of light sources, we considered the influ-
ence of two adjacent dipoles on fluorescence emis-
sion. By analyzing the influence of the relative posi-

tion between the two dipole sources in the flexible

MDM structure and the flexible PVA substrate on
far-field fluorescence emission, their far-field fluor-
escence power curves were obtained, as shown in
Figure 8 (Color online). The power curves of two
coherent and two incoherent dipole sources are giv-
en in Figure 8(a) and Figure 8(b) respectively. It can
be seen that the emission of two dipole sources,

either coherent or incoherent, is stronger than that of
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a single dipole source. With the decrease of the rel-
ative position between the two dipole sources, the
value of fluorescence emission peak will increase
gradually, but its position will remain unchanged.
This is because when two adjacent dipole sources
are close to each other, the emitted light from the
sources will interact with each other in the near field
to increase the emission intensity. Secondly, in a
flexible PVA substrate, the far-field fluorescence
emission of two dipole sources is not affected by
their relative position. Compared with the double-
dipole emission in a flexible PVA substrate, the
double-dipole or single-dipole emission of flexible
MDM structure can achieve far-field fluorescence
enhancement. This finding is of certain guiding sig-
nificance to applying the proposed MDM structure

in flexible light-emitting devices.
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Fig. 8 Far-field fluorescence power curves of (a) two co-
herent dipole sources and (b) two incoherent dipole
sources located at different positions in the MDM
structure and flexible PVA substrate
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4 Experiment and results analysis

In order to verify that the flexible MDM struc-
ture can enhance the luminescence of fluorescent
substances, coumarin 6 is selected here as the fluor-
escent substance for experimental verification. The
process for preparing the MDM structure is shown
in Figure 9 (Color online). The glass slide was
cleaned with alcohol in an ultrasonic cleaner for
15 min. After air-drying, a layer of polydimethyl-
siloxane (PDMS), which was a transparent flexible
medium, was placed on the glass slide. A silver
film with a thickness of 40 nm (99.999% purity)
was prepared by depositing a silver layer on PDMS
through LN-1084SC organometallic vapor depos-
ition system and adjusting the deposition rate
Then, 100 pm coumarin 6
(CyHsN,0,S, MW=350; the central wavelength is
515 nm after the dissolution in alcohol) was mixed
with 3% aqueous PVA solution (MW=44.05). The
required PVA dielectric layer thickness of 115 nm

(~1.0 nm/min).

could be obtained by spin-coating the solution on
silver layer at the set speed of 3000 r/min %, Sub-
sequently, a second silver layer (40 nm) was evapor-
ated by vapor deposition on the PVA layer to obtain
the MDM structure, as shown in Figure 10.

w coating

IPVA-+Coumarin

Ag
PDMS ——

Evaporation

Evaporation

Bending
ap - N

Fig. 9 Preparation process flow chart of MDM structure
K9 MDM gty 1T LA A

The sample was placed on the optical micro-
scope platform. The bent MDM structure was ob-
served with an optical microscope. Its bright field
image and dark field image under 375 nm laser irra-
diation are shown in Figure 11 (Color online). It can
be seen that the bent MDM has a certain radian, and
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that the fluorescent material at the focal point emits
blue and green light under 375 nm laser irradiation,
as observed from the designed MDM structure. The
existence of irregular texture on the surface of
MDM structure indicates that the evaporation pro-
cess has a certain influence on the final morphology
of MDM structure. Subsequently, a continuous laser
with a wavelength of 488 nm was used to irradiate
the sample, and the PL of the sample was collected
by spectrometer. The collection process of structur-

al PL is shown in Fig. 12.

(a) Planar MD (b) Curved MDM
(a) F MDM (b) %y MDM

Fig. 10 MDM structures. (a) planar; (b) curved (top view)
/110 MDM Z5ts, (a) F1; (b) 2l (FFFRLED)

50 pm

(a) Bright field image
(2) W1

Fig. 11 (a) Bright field image of MDM structure under op-

(b) Dark field image
(b) 31514

tical microscope; (b) dark field luminescence im-

age under 375nm laser irradiation
B 62 B s T MDM 4544 (4 (a) W1 3% & (b)
375nm FOLISS T 1R ROE KR

Mirror
M Sample
Laser \

MIITOI'

D
Fig. 12 PL collection process
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The PL of coumarin in PVA on PDMS sub-
strate and that of the obtained planar MDM struc-

ture and the bent MDM structure were detected. The
collected PL curves are shown in Figure 13 (Color
online). It can be seen that compared with the
quantum dot emission in PVA and planar MDM
structure, the flexible curved MDM structure can
further enhance the fluorescence emission of
quantum dots, which is consistent with theoretical
analysis results. In addition, this structure has a rel-
atively wide fluorescence emission spectrum.
However, in the experimental process, the mixing-
ratio error of PVA solution will affect the thickness
of dielectric layer after spin-coating, and then affect
the position of fluorescence emission peak. In addi-
tion, the thickness, homogeneity and bending angle
of the evaporated Ag film have certain influence on

fluorescence enhancement factor.
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Fig. 13 PL curve obtained from the experiment
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5 Conclusion

In this paper, a flexible curved MDM structure
is proposed. The simulation and experimental res-
ults show that this structure can achieve the direc-
tional emission enhancement of far-field fluores-
cence. By using the FDTD method, we systematic-
ally studied the effects of different radius central
angles, dielectric thicknesses, dielectric refractive
indexes and silver film thicknesses on fluorescence
enhancement as well as the effects of adjacent di-
pole sources on fluorescence emission. The results
show that the local undulations and arcs of the

MDM structure can promote fluorescence enhance-
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ment in that they can not only highly modulate the
directionality of the outgoing light of quantum dots,
but also improve the radiation attenuation rate of
quantum dots. In addition, different structure radius
and central angles can enhance the far-field fluores-
cence emission of flexible curved MDM structure
and achieve good directionality. The tunability of
target wavelength can be achieved by changing the
refractive index and thickness of the dielectric layer.
Compared with metal structure and metal-dielectric

structure, the curved MDM structure has the most
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significant fluorescence enhancement effect. When
the quantum dots are located in the middle of the
MDM structure, the high directionality of far-field
fluorescence emission can be achieved, and the far-
field power enhancement factor can reach about 7.
This study verifies the applicability of flexible
MDM structure in flexible devices, demonstrating
that this structure can be used to enhance the lumin-
escence intensity of flexible light-emitting devices

and achieve high-sensitivity fluorescence sensing.
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