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Abstract: Surface waves supported by structured metallic surfaces, i.e.metasurfaces, have drawn wide atten-
tion recently. They are promising for various applications ranging from integrated photonic circuits to ima-
ging and bio-sensing in various frequency regimes. In this work, we show that surface states with diverse po-
larization configurations can be supported by a metasurface consisting of a single layer of bianisotropic
metamaterial elements.The structure possesses D,y symmetry, which includes mirror symmetry in the xz and
yz plane, and C, rotational symmetry along y = £x axis. Due to this unique symmetry, the metasuface sup-
ports both transverse electric (TE) and transverse magnetic (TM) waves along k, and k, directions, while a
purely longitudinal mode and an elliptically polarized transverse electromagnetic(TEM) mode along &, = £k,
directions. The versatility of the surface modes on the metasurface may lead to new surface wave phenom-

ena and device applications.
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1 Introduction

Surface plasmon polaritons (SPPs), due to their
tight confinement to a metal/dielectric interface and
large wave vectors, represent an important platform
for various applications ranging from integrated
photonic  circuits to sensing applications!' .
However, at optical frequencies, due to the signific-
ant ohmic loss of metals, the applications of SPPs
suffer from the short propagation lengths. At longer
wavelengths, the loss of SPPs is significantly re-
duced at the cost of poor confinement of the SPPs in
the dielectric material. In 2004, Pendry proposed the
concept of spoof plasmon that could be supported
by a corrugated metallic surface with an effective
plasma frequency determined by the geometries of
the metallic structures®™, which was subsequently
experimentally verified”. This new scheme greatly
improves the confinement of surface waves to the
structured surfaces, and has attracted tremendous in-
terests from the community of photonics. Various
explorations have been carried out based on spoof
plasmons, including rainbow slow light trapping ef-
fect™, focusing of terahertz waves!”, terahertz sub-
wavelength waveguides™, and terahertz sensing™.

Indeed, structured surfaces (or metasurfaces)
can be engineered to provide more diverse function-
alities that go beyond confinement of surface waves,

10-18]

such as wavefront and amplitude control*'], en-

hanced and tailored nonlinear optical processes!'*?],
resulting in a wide range of applications including
imaging, holography and bio-sensing”**"l. These
new functionabilities can arise from judicious engin-
eering of the unit cells, benefitting from the uncon-
ventional electromagnetic responses of complex
metamaterial designs such as artificial magnetism,

hyperbolicity, chirality and bianisotropy™'**. Bian-

doi: 10.37188/C0.2021-0098

isotropy refers to a cross coupling between electric
and magnetic responses along orthogonal directions.
It can exist in structures that lack inversion sym-
metry but with preserved mirror symmetry. Bianiso-
tropic metamaterials have shown some highly
intriguing phenomena such as asymmetric absorp-

tion**) optical spin-orbit coupling™"

,and topolo-
gical optical effects™. In the past decade, bianso-
tropy has been employed for designing topological
metamaterials, which have shown interesting phe-
nomena such as Fermi arc states and transverse spin
of bulk optical modes™*l. Compared to three di-
mensional bulk metamaterials, the ultrathin nature
of bianisotropic metasurfaces could lead to more
practical applications due to its low fabrication cost
and highly compact physical sizes. In this work, we
experimentally investigate the surface states suppor-
ted by a bianisotropic metasurface and showcase a
number of interesting effects — the existence of both
TE and TM

directions™”, while helical transverse electromagnet-

surface modes along certain
ic mode and longitudinal mode in some other direc-

tions.

2 Results and discussion

The configuration of the metasurface is illus-
trated in Fig. 1(a). Each unit cell of the metasurface
consists of a saddle-shaped metallic loop. The same
unit cell, when arranged in a three dimensional ar-
ray, forms a type-I ideal Weyl metamaterial, as

4] Here we are interested

demonstrated previously
in a metasurface consisting of a single layer of such
structure, and therefore the bulk property is not well
defined. Each unit cell can be considered as two per-
pendicular split ring resonators with opposite orient-
ation of the openings. The structure possesses Dy

symmetry, which includes mirror symmetry in the
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xz and yz plane, and C, rotational symmetry along
y = *x axis.The fundamental resonant mode of the

unit cell is a combination of electrical dipole mo-

Electric plasmon

ment and magnetic dipole moment, each of which
can be excited by both an electric field or a magnet-

ic field oriented in the x—y plane.

(b)

i Longitudinal mode

G5t
5
= ®
% 10 + @ | Transverse mode
& i C=1
E ]
F 5t :
0 i
r 1/2 M
K 2nlp)

:N 15 ) M=+1
@) I
oy | :
g 10 + i Magnetic plasmon
= | M=-1
8 |
= st |
|
|
I
0 :
r 12 X
k/(n/p)
Fig. 1
K1

(a) The schematic of the single-layer metasurface. Every unit cell consists of a saddle-shaped metallic inclusion pos-
sessing D,y point symmetry embedded in the dielectric substrate whose relative permittivity is 2.2. The period of the
metasurface along k, or k, is p. (b) The band structure of the metasurface. The 1%, 2™, 3" bands and light cone are plot-
ted in yellow, red, blue and green, respectively. (c) The dispersions of the surface modes along k,=0 direction. The
modes along this direction corresponding to the 1% and 2™ bands can be regarded as electric plasmon and magnetic
plasmon, respectively. (d) The dispersions of the surface modes along k,=k, direction. The modes along this direction
for the 1* and 2™ bands can be regarded as transverse mode (elliptically polarized) and longitudinal mode, respectively
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The band structure of the metasurface is shown
in Fig. 1(b). There exist multiple bands in the sys-
tem, with some bands located very close to the light
cone (for example, the blue one). Here we are inter-
ested in the 1* and 2™ modes (yellow and red) with
larger wave numbers. Due to the D,y symmetry of
the system, the wave propagation along x and y dir-
ections can be related to each other by simply a rota-

tion of m about the k=+k, axis. In order to have a

clearer view of the dispersions of the surface waves,
we plot the dispersions along the k/k, direction in
Fig. 1(c). The two lowest modes, labelled electric
and magnetic plasmon in the figure, exhibit the typ-
ical surface plasmon dispersion features, i.e. an ap-
proximately linear dispersion at lower frequency,
and the dispersion gradually become flat when ap-
proaching the effective plasma frequency”. We fur-

ther plot the dispersions of the surface modes along
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k,=+k, directions, as shown in Fig. 1(d). These 1*
and 2™ modes are TEM and longitudinal modes, re-
spectively.Interestingly, these two surface modes
become degenerate at the corner of the Brillounin
zone, i.e. M point. As will be explained later, this
degeneracy arises from the D,y symmetry of the sys-
tem.

The existence of TE and TM modes can be
analyzed through the point group symmetry. For
modes along k,/k, direction, they must satisfy the
mirror symmetry M,,, about yz or xz plane. The ei-
gen values of M are £1. For M’ = +1, the normal E
field with respect to mirror plane will cancel out
when integrated over the unit cell, while the parallel
E field remains. Meanwhile, the H field, which is a
pseudo vector field, behaves in the opposite way.
Therefore this represents a TM mode. The p7 = —1
mode, on the other hand, represents a TE mode
based on a similar analysis. We further carry out full
wave simulation, and present the field plots of the x-
propagating modes in the xz cross-section plane cut-

ting through the center of the unit cell in Fig. 2. For

point (D on 1* mode in Fig. 1(c), the electric field is
aligned along y direction, which is perpendicular to
the propagation plane (Fig. 2(a)), whereas the mag-
netic field lies in the propagation plane having both
x and z components (Fig. 2(b)). This confirms that
1** mode is not just a TE mode but also a magnetic
surface plasmon mode, which is distinct from the
conventional surface plasmon mode. It is interest-
ing to note that the electric and magnetic field com-
ponents are mostly confined to the top and bottom
surfaces, respectively. On the other hand, the field
distributions (Fig. 2(c) and 2(d)) of point ) on 2"
mode show opposite configuration as that of TE
mode. Namely, the electric field lies in the propaga-
tion plane and the magnetic field is perpendicular to
it, which represent the main features of convention-
al TM polarized surface plasmon modes. The pres-
ence of both TE and TM polarized surface plasmon
modes can be attributed to the fact that the unit cell
of the bianisotropic metasurface supports both elec-

tric and magnetic resonances.
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Fig. 2 Field distributions of surface plasmon modes propagating along x direction. On the left, the schematic of the unit cell il-

lustrating the plane in which the fields are plotted is shown. (a, b) The E and H field distributions for point (D on 1*
mode in Fig. 1(c). (¢, d) The E and H fields for point @ on 2™ mode. k, of point (D and ) is fixed at 7/2p, where p is

the period along x and y directions
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However, away from k/k, directions, the sur-
face plasmon modes are not exactly TE and TM
modes anymore, but generally a hybridization

between them. Interestingly, along k,=+k, direc-

tions, this hybridization leads to a complete re-ar-
rangement of the field components, and the longit-
udinal mode and TEM mode emerge.The existence

of the longitudinal mode and TEM can also be ana-
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lyzed through the symmetry of the point group with
respect to this direction. As the metasurface has C,
symmetry along k=+k, directions, the eigen values
of C, are £1. For the C, = +1 mode, if we rotate the
field by m about the symmetry axis, we will get the
same field. This means that all the field components,
both E and H perpendicular to the symmetry axis
will cancel out when integrated over the unit cell,
while fields components parallel to the symmetry
axis remains, and therefore this corresponds to a
longitudinal mode. For the C, =—1 mode, the situ-
ation is opposite, i.e. all longitudinal components
cancel out while transverse components remain,
which corresponds to a TEM mode. This is illus-
trated by the fields shown in Fig. 3. Fig. 3(a) and
3(b) show the distribution of the electric and mag-
netic fields of point @ (k,=k,=n/2p) in Fig. 1(d), re-
spectively, in a cross section plane perpendicular to
the propagation direction. It is observed that both
the E and H fields primarily lie in the plane, while
the longitudinal components of the fields at differ-
ent locations are opposite and cancel out, leading to
an overall TEM mode. It is interesting to note that
both the E and H fields rotate anticlockwise with
time in the plane, i.e. the TEM mode is elliptically
polarized. On the other hand, the distribution of E
and H fields of point @), as illustrated in Fig. 3(c)
and 3(d) respectively, are primarily aligned along
the propagation direction. Thus, it is confirmed that
I*mode is a pure longitudinal mode with both lon-
gitudinal E and longitudinal H components. We fur-
ther look into the field distributions of the two points
(® and ® in Fig. 1(d) close to M point in a hori-
zontal plane (xy plane) cutting through the center of
the unit cell, as shown by Fig. 3(e—h). The fields
clearly show that the two modes can be related to
each other through the following symmetry opera-
tions: a rotation of 90° in the xy plane about the cen-
ter of the unit cell, followed by a mirror symmetry
in z direction, which are consistent with the D,y
symmetry of the metasurface structure. Thus, this
symmetry argument

explains the degeneracy

between the two modes at M point as shown in

Fig. 1(d).

To measure the dispersion of the surface
modes, we place a source antenna at the center of
bottom surface of the sample, which consists of
90x70 unit cells, while the electric field distribution
is mapped by a probe antenna raster-scanning the
top surface. The Fourier transformations of the elec-
tric field, which represent the equal frequency con-
tours (EFCs), at two representative frequencies of
10.9 GHz and 13.3 GHz are shown in Fig. 4(a) and
4(c), respectively, to illustrate the 1% and 2™ modes.
The corresponding simulated results are shown in
Fig. 4(b) and 4(d). The EFC of 1* band appears
roughly as a round loop, as shown in Fig. 4(a, b). In-
side the EFC of 1* band, the light cone and higher
modes are crowded together into a bright smaller
circle. The measured EFCs match well with the sim-
ulated ones shown in Fig. 4(b). At a higher fre-
quency of 13.3 GHz, the EFC of 2™ band shows a
more complicated pattern — an ellipse centered at
the I" point and four nearly straight lines close to the
corner (Fig. 4(c)). Considering the periodic bound-
ary of the Brilloun zone, these four lines indeed
form a closed contour around the M point. The
measured EFC agrees well with the simulation res-
ult (Fig. 4(d)), except for the missing of half of the
elliptical contour with long axis oriented along x dir-
ection. This is because in the experiment only the
top surface is measured, whereas the mode corres-
ponding to the missing contour is mainly localized
at the bottom surface. From the measured EFCs at
different frequencies, one can retrieve the disper-
sion curves along different directions. As shown in
Fig. 4(e), the experimentally retrieved dispersion of
1" and 2™ bands along k,/k, directions clearly show
the characteristics of typical surface plasmons and
they correspond to the TE and TM surface plasmon
modes with different effective electric and magnetic
plasma frequencies. However, along k=+k, direc-
tions, the two bands show very distinct features —
while mode 1 shows similar dispersion as a conven-

tional surface plasmon, mode 2 exhibits a negative
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dispersion at large wavevectors (Fig. 4(f)). They be- with the numerical results as indicated by the dashed
come degenerate at M point, matching very well lines.
y=—x+tp/4 y=x

Fig. 3 Field distributions of surface plasmon modes propagating along k,=k, direction. (a, b) Field distributions of 1* mode at
point @ (k,=k, = n/2p) in Fig. 1(d). The simulated E (a) and H (b) field distributions in the plane perpendicular to the
propagation direction, corresponding to the cutting plane shown in the schematic above. In both plots, the overall field
distribution lie in the plane, indicating that this is a TEM mode. (c, d) Field distributions of 2" mode at point (%) (k=k, =
n/2p) in Fig. 1(d). The simulated E (c) and H (d) field distributions in the plane perpendicular to the propagation direc-
tion, corresponding to the cutting plane shown in the schematic above. In both plots, the overall field distributions are
out of plane (along the propagation direction), indicating that this is a pure longitudinal mode with both longitudinal
components of E and H fields. (e-h) Field distributions of points 3 and ® in Fig. 1(d), closing to the M point (phase
advance is 170°), for a horizontal xy plane cutting through the center of the unit cell, as indicated by the schematic
above. (e, f) correspond to the E and H field distributions of point (5, and (g, h) correspond to E and H field distribu-
tions of point ®. It is observed that the two modes are related to each other through an in-plane rotation of 90° about
the center of the unit cell, followed by a mirror symmetry in z direction
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10.9 GHz. The measured (c) and simulated (d) EFC at frequency of 13.3 GHz. (e, f) The dispersion of the surface

modes along k,/k, and k, ==k, directions, respectively. The dashed lines in the plots correspond to the simulation results
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Measurement of polarization controllable excitation of surface modes. (a) The experimental setup for measuring the
surface mode. The excitation dipole antenna is oriented either in the vertical direction (upper panel) or the horizontal
direction (lower panel). (b, c¢) Electric field distribution on top surfaces under polarization of p,—p, and p,+p,, respect-
ively. (d, e) Same as (b, c¢) but the fields are measured on bottom surfaces under LCP and RCP excitation, respectively.
All subplots attached to (b-¢) are the corresponding EFCs in the Brillouin zone
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Finally we experimentally investigate the excit- ection in the middle of the edge along x direction.
ation of the surface waves by controlling the orient- For both configurations, we measure the field distri-
ation of the source dipole antenna. The experiment- butions on either the top surface or the bottom sur-
al setup for the measurement is shown in Fig. 5(a). face of the metasurface. By combining the two

A source antenna is oriented along either x or z dir- measured field distributions with source dipole an-
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tenna oriented along the two orthogonal directions
(x and z), one can retrieve the field distribution for
tilted dipole antenna (e.g.orientation of +45° and
—45°) and for circularly polarized antenna (left and
right handed). Fig. 5(b) and 5(c) show the field pat-
terns excited by a dipole antenna oriented along
+45° and —45°, respectively, wherein the surface
wave primarily propagates towards the left or the
right hand side depending on the polarization of the
exciting antenna. The field distributions also show
very distinct features on the two sides when the
source antenna is circularly polarized-a single beam
appearing on one side and two split beams appear-
ing on the other side, as shown by Fig. 5(d) and
5(e). The configurations are swapped when the ro-
tating direction of the source antenna is flipped.
This directly demonstrates the spin and orientation
controlled excitation of the surface waves on the
metasurface. In this experiment, the excitation effi-
ciency is not very high, but sufficient to see all exot-

ic features of this metasurface. For achieving a high-

References:

er excitation efficiency, the size and orientation of
the antenna would require very fine adjustment to

match the polarization of the mode.

3 Summary

In summary, we have designed and demon-
strated a bianisotropic metasurface with a unique
symmetry configuration and investigated the rich
features of surface waves supported by the metasur-
face. We have shown that both TE and TM surface
plasmon waves can exist along certain directions,
while along some other directions, there exist a pure
longitudinal mode with both electric and magnetic
components, and an elliptically polarized transverse
electromagnetic mode. Such diverse dispersion and
polarization configurations of the surface plasmon
modes provide new degrees of freedom for con-
structing compact photonic integrated devices.
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