

Ag@SiO₂纳米核壳结构对铒碲发光玻璃的发光增强机制

陈晓波 李崧 赵国营 刘洪珍 郭敬华 马瑜 王克志 耿珠峰

Luminescence enhancement mechanism of Er³⁺ ions by Ag@SiO₂ core-shell nanostructure in tellurite glass

CHEN Xiao-bo, LI Song, ZHAO Guo-ying, LIU Hong-Zhen, GUO Jing-hua,

MA Yu, WANG Ke-zhi, GENG Zhu-feng

引用本文:

陈晓波, 李崧, 赵国营, 刘洪珍, 郭敬华, 马瑜, 王克志, 耿珠峰. Ag@SiO2纳米核壳结构对铒碲发光玻璃的发光增强机制[J]. 中国光学, 2022, 15(2): 224-232. doi: 10.37188/CO.2021-0142

CHEN Xiao-bo, LI Song, ZHAO Guo-ying, LIU Hong-Zhen, GUO Jing-hua,

MA Yu, WANG Ke-zhi, GENG Zhu-feng. Luminescence enhancement mechanism of Er³⁺ ions by Ag@SiO₂ core-shell nanostructure in tellurite glass[J]. *Chinese Optics*, 2022, 15(2): 224-232. doi: 10.37188/CO.2021-0142

在线阅读 View online: https://doi.org/10.37188/C0.2021-0142

您可能感兴趣的其他文章

Articles you may be interested in

ZnO/ZnS核壳纳米线界面缺陷的形成及发光特性研究

Formation of interface defects of ZnO/ZnS core-shell nanowires and its optical properties investigations 中国光学. 2019, 12(4): 872 https://doi.org/10.3788/CO.20191204.0872

复合Ag/SiO,正弦光栅基底SERS特性分析

SERS characteristics analysis of composite ${\rm Ag/SiO}_2$ sinusoidal grating

中国光学. 2019, 12(1): 59 https://doi.org/10.3788/CO.20191201.0059

Li⁺, Zn²⁺, Mg²⁺掺杂Lu₂O₂:Er³⁺荧光粉的制备及发光特性

Preparation and luminescence properties of Li^+ , Zn^{2+} , Mg^{2+} doped Lu_2O_3 : Er^{3+} phosphors

中国光学. 2019, 12(1): 112 https://doi.org/10.3788/CO.20191201.0112

纳米尺度下的局域场增强研究进展

Advances in the local field enhancement at nanoscale

中国光学. 2018, 11(1): 31 https://doi.org/10.3788/CO.20181101.0031

 Li^+ 、Na⁺共掺(Y_xGd_yLu_{1-x-y})₂O₃:0.5%Pr³⁺荧光粉的制备及发光特性研究

Preparation and luminescence properties of Li⁺, Na⁺ co-doped $(Y_x \text{Gd}_v \text{Lu}_{1-x-v})_2 \text{O}_3$: 0.5% Pr³⁺ phosphors

中国光学. 2019, 12(6): 1279 https://doi.org/10.3788/CO.20191206.1279

金属等离子激元调控Fabry-Perot微腔谐振模式研究

Resonant mode of Fabry-Perot microcavity regulated by metal surface plasmons 中国光学. 2019, 12(3): 649 https://doi.org/10.3788/CO.20191203.0649 文章编号 2095-1531(2022)02-0224-09

Ag@SiO₂纳米核壳结构对铒碲发光玻璃的 发光增强机制

陈晓波1*,李 崧1,赵国营2,刘洪珍3,4,郭敬华1,马 瑜2,王克志5,耿珠峰1

(1. 北京师范大学应用光学北京重点实验室,北京100875;

2. 上海应用技术大学 材料科学与工程学院, 上海 200235;

3. 北京科技大学先进金属材料工程国家重点实验室,北京100083;

4. 北京科技大学 材料科学与工程学院, 北京 100083;

5. 北京师范大学 化学学院, 北京 100875)

摘要:本研究首次把预先制备好的 Ag@SiO₂ 纳米核壳结构成功地引进到碲化物发光玻璃 70TeO₂-25ZnO-5La₂O₃-0.5Er₂O₃ 体内,发现 (A) Ag(1.6×10⁻⁶ mol/L)@SiO₂(40 nm) @Er³⁺(0.5%):铒碲发光玻璃相对于样品 (B) Er³⁺(0.5%): 铒碲发光玻璃的可见光与红外光的激发光谱强度的最大增强依次为 149.0% 与 161.5%,可见光与红外光的发光光谱强度则依 次最大增强了 155.2% 与 151.6%,同时还发现样品 (A) 相对于样品 (B) 的寿命显著变长。由于 Ag@SiO₂ 的表面等离子 体吸收峰恰好位于 546.0 nm,它与铒离子的发光峰 546.0 nm 完全共振,因此,Ag@SiO₂ 对铒碲发光玻璃的发光共振增强 作用显著。由于银的纳米核壳结构与玻璃的制作具有分步实现的优点,它既能成功控制 Ag@SiO₂ 的尺寸,而且在 Ag@SiO₂@Er: 铒碲发光玻璃的制作过程中还具有可操作性强的优点,同时价格也更加便宜。在保证银不被氧化的前提 下,还可控制稀土离子发光中心与银的表面等离子体之间的距离,因此能够成功地减少背向能量反传递。上述优点促成 了 Ag@SiO₂ 纳米核壳结构表面等离子体有效加强了 Ag@SiO₂@Er³⁺:铒碲发光玻璃的常规光致发光强度。

关 键 词:Ag@SiO2纳米核壳结构;发光的增强作用;表面等离离子体

中图分类号:O433.1 文献标志码:A doi:10.37188/CO.2021-0142

收稿日期:2021-07-17;修订日期:2021-08-09

Supported by the National Natural Science Foundation of China (No. 51972020, No. 51472028); the Fundamental Research Funds of Central Universities of China (No. 2017TZ01)

基金项目:国家自然科学基金项目 (No. 51972020, No. 51472028); 中央高校基本科研业务费专项资金 (No. 2017 TZ01)

Luminescence enhancement mechanism of Er³⁺ ions by Ag@SiO₂ core-shell nanostructure in tellurite glass

CHEN Xiao-bo¹*, LI Song¹, ZHAO Guo-ying², LIU Hong-Zhen^{3,4}, GUO Jing-hua¹, MA Yu², WANG Ke-zhi⁵, GENG Zhu-feng¹

(1. Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China;

2. School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China;

3. State Key Laboratory for Advanced Metals and Materials, University of

Science and Technology Beijing, Beijing 100083, China;

4. School of Materials Science and Engineering, University of

Science and Technology Beijing, Beijing 100083 China;

5. Chemistry College, Beijing Normal University, Beijing 100875, China)

* Corresponding author, E-mail: chen78xb@sina.com

Abstract: In this paper, we introduce a prefabricabed $Ag@SiO_2$ nanostructure directly into tellurite luminescence glass composed of 70TeO₂-25ZnO-5La₂O₃-0.5Er₂O₃. We find that the maximum enhancement of visible and infrared excitation spectra intensity of (A) Ag (1.6×10⁻⁶ mol/L)@SiO₂(40 nm) @Er³⁺ (0.5%): tellurite glass relative to (B) Er³⁺ (0.5%): tellurite glass is about 149.0% and 161.5%, respectively. Their maximum enhancement of visible and infrared luminescence spectra intensity is 155.2% and 151.6%, respectively. We also find that sample (A) has a larger lifespan compared to sample (B). Because the surface plasmon absorption peak of $Ag@SiO_2$ is located at 546.0 nm, it completely resonates with the luminescence peak of erbium ions which are also at 546.0 nm. Therefore, the resonance enhancement action of $Ag@SiO_2$ on the luminescence of erbium-doped tellurite luminescence glass is significant. Thanks to the advantages of the stepby-step realization of the silver nano core-shell structure and the production of glass, it can successfully and smoothly control the size of Ag@SiO2. It also has the advantage of strong operability in the manufacturing process of Ag@SiO₂@Er: telluride luminescence glass. Its costs are also minor. Moreover, it can not only ensure that the silver is not oxidized, but it can also successfully control the distance between the rare earth ion luminescence center and the silver surface plasma. It can also successfully reduce the back energy transfer, which allows the silver surface plasma to more effectively enhance the intensity of photo-luminescence. Key words: Ag@SiO₂ core-shell nanostructure; luminescence enhancement; surface plasmon

1引言

能够在纳米尺度上极大地改进光学性能的银 纳米结构^[1-2],由于其在进一步改善光成像与发光 照明存储激光质量和加强光发射效率等方面具有 极佳的潜能与应用前景^[1-6],受到了广泛的研究。 研究发现,其荧光分子与金属银纳米结构表面等 离激元的作用会造成荧光光谱产生显著改变,分 子的荧光寿命、荧光辐射发光强度、光谱线型、辐射衰减速率、上转换与下转换发光、方向发射性能、光吸收的范围强度、分子的发光量子效率等都会有显著的改进^[3-6]。通过研究金属银纳米结构与发光中心相互作用^[5-8],可以有助于改进对金属银纳米结构与发光中心相互作用的全面认识,从而可以扩展它在光信息相关应用技术领域、光学存储成像照明元器件及荧光诊断技术等领域的应用。当纳米结构银受到激发光场的作用时,金

属银表面的自由电子受激振荡,与光场耦合形成 局域表面等离子体激元 (LSP), 具有高度的局域 性与场增强性能,可以实现发光增强。中国科学 院长春光学精密机械与物理研究所的 Xue Bin 与 Tu Langping^[1]、福建师范大学郑志强^[2]、赵国营 与HuLL³、PARKW⁴、北京大学的龚旗煌与 ZHAO J Y 与 CHENG Y Q^[5]、邱建荣^[6]、福建物质 结构研究所的陈学元与香港的 HE J J^[7]、中国科 学院长春光学精密机械与物理研究所的 Wang Dan 与 Tu Lang-ping 与 Kong Xiang-gui^[8]、北京大 学的 Yan Chunhua 与 Yang Zhi^[9]、美国 Maryland 大学的 Lakowicz^[10]、Wang Qingru^[11]、长春 Song Hongwei 与 Xu Wen 与 Chen P^[12] 等人对常规光 致发光与上转换发光的增强展开研究,获得了 很多很好的结果[12-17]。碲化物的发光玻璃内金 属银表面等离子体增强铒离子发光的工作也有 了一些报道[13,15]。上述这些成果对于促进发光 学的自身进一步发展很有意义[17-23]。这些工作 已受到了很好的评价与广泛的引用。本研究 中,把预先制备好的 Ag@SiO₂ 纳米核壳结构直 接引入到碲化物发光玻璃体内,以进一步加强 常规光致发光强度[17]。由于银的纳米核壳结 构与玻璃的制作可以分步实现,因此,能控制 Ag@SiO₂的尺寸,而且 Ag@SiO₂@Er: 铒碲发光 玻璃的制作过程的可操作性强,此外,其成本 低, Ag@SiO₂ 纳米核壳结构作为其增强发光过 程的表面等离子体的载体,既能够保证金属银 不被氧化,更能尽量控制稀土离子发光中心与 银的表面等离子体之间的距离,因此能够成功地 减少背向能量反传递,上述这些优点使得银的 Ag@SiO2 纳米核壳结构表面等离子体有效地加 强了 Ag@SiO2@Er3+: 铒碲发光玻璃的常规光致 发光强度。

2 实验样品与测量仪器

70TeO₂-25ZnO-5La₂O₃-0.5Er₂O₃ 碲化物发光玻 璃由高纯的 TeO₂、ZnO、La₂O₃ 与 Er₂O₃ 粉末原料 制备而成,充分混合好的 25 g 原料溶解在 50 mL 水 溶液中形成悬浊液,随后加入了 1.52 μL、0.5 mg/mL 的 Ag@SiO₂,充分搅拌与超声之后,采用离心方 法初步去除水分,随后再放到 80°C 的真空烘箱烘 干,烘干后的原料放置在氧化铝坩埚内,在 900 °C 的氧气氛内融解 30 min,干燥氧气的引入能够比 较好地排除羟基,从而能够减小多声子无辐射弛 豫作用,加强了荧光发光强度,有效提升了发光量 子效率^[17]。把熔融之后的熔液倒入已经预热的无 污染的钢模内,再迅速把样品放在大约为 300 °C 下(玻璃相变点)退火 2 h。最后再把所获玻璃样 品切割与抛光成为 16 mm×20 mm×2 mm 尺寸,以 供光学测量。依照前述的程序所制备的样品有: (A) Ag(1.6×10⁻⁶ mol / L)@ SiO₂@Er³⁺(0.5%): 铒碲 发光玻璃、(B) Er³⁺(0.5%): 铒碲发光玻璃。(A)样 品的分子组成为 70TeO₂-25ZnO-5La₂O₃-0.5Er₂O₃-Ag(1.6×10⁻⁶ mol/L)。

荧光测量所用仪器为 FL3-2iHR 荧光分光光 度仪(Horiba 公司, 日本), 荧光的激发光源为氙 灯, 发光照明的稳定度很好, 功率为 450 W。 R2658p 与 H10330-75 光电倍增管分别为可见光 与红外光探测器。所有结果同一个光谱图的相同 波长处的强度可以直接比较。光吸收测量所用仪 器为 Lambda 950 紫外可见近红外分光光度计 (Perkin Elmer 公司, 美国)。荧光寿命测量则由 FL3-2iHR 荧光分光光度仪实现(Horiba 公司, 日 本), 由闪烁脉冲氙灯完成测量, 闪烁脉冲氙灯的 功率为 25 W, 脉冲宽度小于 1 μs。

3 电镜测量结果

实验采用捷欧路 JEM-ARM200F 型号的透 射电镜(日本电子公司,日本),测量了纳米核壳结 构 Ag@SiO₂水溶液的形貌与结构。电镜测量的 加速工作电压为 200 kV。把 4.63×10⁻³ mol/L 的 Ag@SiO₂水溶液的原液稀释成 1.85×10⁻³ mol/L 的稀释液,稀释液的样品透射电镜形貌图如图 1 所示。从图 1 可以看到 Ag@SiO₂水溶液稀释液 样品分布着很多单分散的圆点状的银纳米核壳结 构的小颗粒,银核质量和 Ag@SiO₂ 壳层质量都很 好。通过测量可知,图 1 中 Ag@SiO₂ 纳米核壳结 构的尺寸大约为 60 nm, SiO₂ 壳层的厚度大约为 40 nm。

图 1 Ag@SiO₂水溶液的样品透射电镜形貌图 Fig. 1 TEM morphology of Ag@SiO₂ aqueous solution

4 吸收测量结果

该文采用 Lambda 950 紫外可见近红外分光光度计,测量了 (A) Ag(1.6×10⁻⁶ mol/L)@SiO₂(40 nm) @Er³⁺(0.5%): 铒碲发光玻璃样品与 (B) Er³⁺(0.5%): 铒碲发光玻璃样品的吸收光谱, 光谱测量结果如 图 2(彩图见期刊电子版)所示。显然, 两样品都 有典型的铒离子吸收峰, 样品 A 与样品 B 的铒离 子光吸收峰大致相同, 均为半宽很窄的尖锐峰, 波 峰的形状、吸收峰值强度与吸收峰值波长都几乎 相同。从该吸收的光谱图可以测量出铒离子的吸 收位于 (1499.0 nm, 1531.5 nm), 978.0 nm, 799.0 nm, 653.0 nm, 544.5 nm, 521.5 nm, 489.0 nm, 451.5 nm, 407.0 nm, 379.0 nm与 365.5 nm。这些光吸收依

- 图 2 270~1800 nm 波长范围内 (A) Ag(1.6×10⁻⁶ mol /L) @SiO₂(40 nm)@Er³⁺(0.5%): 铒碲发光玻璃样品 (A 蓝线) 与 (B) Er³⁺(0.5%): 铒碲发光玻璃样品 (B 红 线) 的吸收光谱
- Fig. 2 Absorption spectrum of (A) Ag(1.6×10⁻⁶ mol/L)@ SiO₂(40 nm) @Er³⁺(0.5%):TeZnLa glass (blue line A) and (B) Er(0.5%):TeZnLa glass (red line B) when measured from 270 nm to 1 800 nm

次为铒离子的⁴I_{15/2}→⁴I_{13/2}, ⁴I_{15/2}→⁴I_{11/2}, ⁴I_{15/2}→⁴I_{9/2}, ⁴I_{15/2}→⁴F_{9/2}, ⁴I_{15/2}→⁴S_{3/2}, ⁴I_{15/2}→²H_{11/2}, ⁴I_{15/2}→⁴F_{7/2}, ⁴I_{15/2}→(⁴F_{3/2}, ⁴F_{5/2}), ⁴I_{15/2}→²H_{9/2}, ⁴I_{15/2}→⁴G_{11/2}, 与 ⁴I_{15/2}→⁴G_{9/2} 的吸收跃迁^[16]。图 3 给出了 290~ 800 nm 波长范围的 Ag(1.50×10⁻³ mol /L)@SiO₂ (40 nm) 水溶液样品的吸收。可以看到, 546.0 nm 处有显著的银表面等离子体吸收峰^[17]。图 4(彩 图见期刊电子版)给出了样品的能级结构和表面 等离子体增强发光过程的示意图, 左侧给出了铒 离子的能级结构, 右侧给出了银表面等离子体的 吸收结构。

- 图 3 290~800 nm 波长范围内 Ag(1.50×10⁻³ mol/L)@SiO₂ (40 nm) 水溶液样品的吸收谱
- Fig. 3 Absorption spectrum of the Ag(1.50×10⁻³ mol/L)@ SiO₂(40 nm) solution sample when measured from 290 nm to 800 nm

- 图 4 Er³⁺Ag⁰: TeZnLa 样品的能级结构与表面等离子体增 强发光过程的示意图。蓝线、红线与绿线依次代表 吸收、发光与共振散射增强过程。
- Fig. 4 Schematic diagram of the energy level structure and luminescence enhancement process induced by the surface plasmon of the Er³⁺Ag⁰: TeZnLa sample. The blue line, red line and green lines represent the absorption, luminescence and resonant scatter enhancement process respectively.

5 激发光谱测量结果

首先,选择 550.0 nm 作为荧光接收波长测量了 $(A)Ag(1.6 \times 10^{-6} \text{ mol/L})@SiO_2(40 \text{ nm})@Er^{3+}(0.5\%):$ 铒碲发光玻璃与 (B)Er³⁺(0.5%):铒碲发光玻璃在 280.0~538.0 nm 范围的可见激发光谱,图 5(彩图 见期刊电子版)给出了可见光区激发光谱测量结 果。测量发现:有365.0、378.0、406.5、450.0、 487.5 与 520.5 nm 的 6 个激发光谱峰,其光谱峰 为铒离子的4I15/2→4G9/2、4I15/2→4G11/2、4I15/2→2H9/2、 ⁴I_{15/2}→(⁴F_{3/2},⁴F_{5/2})、⁴I_{15/2}→⁴F_{7/2}与⁴I_{15/2}→²H_{11/2}光跃 迁的吸收峰^[16];从测量结果可以看到(A)Ag (1.6×10⁻⁶ mol /L)@SiO₂(40 nm)@Er³⁺(0.5%):铒碲 发光玻璃样品的这6个激发光谱峰值强度分别 为 2.229×10⁵、1.008×10⁶、1.013×10⁵、9.380×10⁴、 2.733×10⁵ 与 8.768×10⁵, (B) Er³⁺(0.5%):铒碲发光 玻璃样品的这6个激发谱峰的峰值强度则依次 为 1.630×10⁵、7.357×10⁵、6.851×10⁴、6.337×10⁴、 1.834×10⁵ 与 6.136×10⁵。(A) Ag(1.6×10⁻⁶ mol/L)@ SiO₂(40 nm) @Er³⁺(0.5%):铒碲发光玻璃样品的这 6个激发谱峰强度依次为 (B) Er³⁺(0.5%):铒碲发 光玻璃样品的 136.7%、137.0%、147.9%、147.1%、 149.0%与142.9%。

- 图 5 (A) Ag(1.6×10⁻⁶ mol /L)@SiO₂(40 nm)@Er³⁺(0.5%): 铒碲发光玻璃样品 (A 蓝线) 与 (B) Er(0.5%): 铒碲 发光玻璃样品 (B 红线) 在 280~538 nm 波长范围内 可见激发光谱(接收荧光波长为 550 nm)
- Fig. 5 The visible excitation spectra of (A) Ag(1.6× 10⁻⁶ mol/L)@SiO₂(40 nm)@Er³⁺(0.5%):TeZnLa glass (blue line A) and (B) Er(0.5%):TeZnLa glass (red line B) from 280 nm to 538 nm when monitored at 550 nm

设置荧光接收波长为 1531 nm, 测量了

280.0~850.0 nm 的近红外激发光谱,图 6(彩图见 期刊电子版)给出了红外光区的激发光谱测量结 果。测量发现:有9个激发谱峰依次位于365.0、 377.5、406.5、450.5、488.0、520.5、544.0、652.0 与 798.0 nm, 激发峰依次为铒离子的4I15/2→4G9/2、 ${}^{4}I_{15/2} \rightarrow {}^{4}G_{11/2} \xrightarrow{4}I_{15/2} \rightarrow {}^{2}H_{9/2} \xrightarrow{4}I_{15/2} \rightarrow ({}^{4}F_{3/2}, {}^{4}F_{5/2}) \xrightarrow{4}I_{15/2} \rightarrow$ ${}^{4}F_{7/2} \xrightarrow{4} {}^{4}I_{15/2} \xrightarrow{4} {}^{4}I_{15/2} \xrightarrow{4} {}^{4}S_{3/2} \xrightarrow{4} {}^{4}I_{15/2} \xrightarrow{4} {}^{4}F_{9/2} \xrightarrow{4} {}^{4}I_{15/2} \xrightarrow{4}$ 4I9/2 光跃迁的吸收峰[16], 从测量结果可以看到 (A) Ag(1.6×10⁻⁶mol/L)@SiO₂(40 nm)@Er³⁺(0.5%):铒 碲发光玻璃样品的这9个红外激发光谱峰值强度依 次为 7.706×10⁶、2.528×10⁷、3.332×10⁶、3.073×10⁶、 7.605×10⁶、2.135×10⁷、2.772×10⁶、8.013×10⁶与 2.811×106,同时(B) Er3+(0.5%):铒碲发光玻璃样 品的这9个红外激发光谱峰的强度则依次为 5.089×10^{6} , 1.660×10^{7} , 2.113×10^{6} , 1.903×10^{6} , 4.838×10^{6} , 4.838×10^{6} , 1.903×10^{6} , 1.600×10^{7} , 1.903×10^{6} , 1.903×10 10⁶、1.365×10⁷、1.736×10⁶、5.059×10⁶与 1.907× 10^{6}_{\circ} (A) Ag(1.6×10⁻⁶ mol/L)@SiO₂(40 nm) @Er³⁺ (0.5%): 铒碲发光玻璃样品的这 9 个激发谱峰强 度依次为 (B) Er³⁺(0.5%):铒碲发光玻璃样品的 151.4% 152.3% 157.7% 161.5% 157.2% 156.4% 159.7%、158.4%、与147.4%。

- 图 6 (A) Ag(1.6×10⁻⁶ mol/L)@SiO₂(40 nm)@Er³⁺(0.5%):铒 碲发光玻璃样品 (A 蓝线) 与 (B) Er(0.5%):铒碲发光 玻璃样品 (B 红线) 在 280~850 nm 波长范围内红外 激发光谱(接收荧光波长为 1531 mm)
- Fig. 6 The infrared excitation spectra of (A) Ag(1.6× 10⁻⁶ mol/L)@SiO₂(40 nm)@Er³⁺(0.5%):TeZnLa glass ((blue line A) and (B) Er(0.5%):TeZnLa glass (red line B) from 280 nm to 850 nm when monitored at 1 531 nm

6 发光光谱测量结果

选择 378.0 nm、520.5 nm 与 406.5 nm 激发峰

作为激发波长,测量 (A) Ag(1.6×10⁻⁶ mol/L) @ SiO₂(40 nm)@Er³⁺(0.5%):铒碲发光玻璃与(B) Er³⁺(0.5%):铒碲发光玻璃在 395~810 nm 范围的 可见发光光谱,图7(彩图见期刊电子版)与表1 给出了可见光的发光光谱测量结果。测量结果发 现有 408.0、525.0、546.0、659.0 nm 的 4 组可见 发光峰, 它们依次为 Er^{3+} 离子的 ${}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$, ²H_{11/2}→⁴I_{15/2}, ⁴S_{3/2}→⁴I_{15/2} 与⁴F_{9/2}→⁴I_{15/2} 荧光跃迁^[16]。 研究发现其 378.0 nm、520.5 nm 与 406.5 nm 光 激发 (A) Ag(1.6×10⁻⁶ mol/L)@SiO₂(40 nm)@Er³⁺ (0.5%): 铒碲发光玻璃样品所造成的 546.0 nm 的 可见光的发光峰的峰值强度依次为 2.261×10⁵、 2.090×10⁵ 与 0.222×10⁵; 同时 378.0 nm、520.5 nm 与 406.5 nm 光激发 (B) Er³⁺(0.5%): 铒碲发光玻 璃样品所造成的 546.0 nm 的发光峰的强度则 依次为 1.501×10⁵、1.376×10⁵ 与 0.143×10⁵。因此 378.0 nm、520.5 nm 与 406.5 nm 光 激发 (A) Ag (1.6×10⁻⁶ mol/L) @SiO₂(40 nm)@Er³⁺(0.5%): 铒碲 发光玻璃样品所造成的 546.0 nm 的可见光的发 光峰的峰值强度依次为 (B) Er3+(0.5%): 铒碲发光 玻璃样品的 150.6%、151.9% 与 155.2%, 即 Ag (1.6×10⁻⁶ mol /L)@SiO₂(40 nm)的引入导致铒碲 发光玻璃内铒离子可见发光最大增强了 155.2%。

- 图 7 (A) Ag(1.6×10⁻⁶ mol /L)@SiO₂(40 nm)@Er³⁺(0.5%): 铒碲发光玻璃样品 (A 蓝线) 与 (B) Er³⁺(0.5%):铒碲 发光玻璃样品 (B 红线) 在 395 nm 到 718 nm 波长范 围内可见发光光谱(激发波长为 378.0 nm)
- Fig. 7 The visible luminescence spectra of (A) Ag($1.6 \times 10^{-6} \text{ mol/L}$)@SiO₂(40 nm)@Er³⁺(0.5%):TeZnLa glass (blue line A) and (B) Er(0.5%):TeZnLa sample (red line B) from 395 nm to 718 nm when excited by 378.0 nm

同样,选择 378.0 nm 与 520.5 nm 激发峰作为 激发波长,测量了 (A) Ag(1.6×10⁻⁶mol /L)@SiO₂

- 表 1 样品 A 与样品 B 的可见光与红外光的发光强度与 增强倍数
- Tab. 1The luminescence intensity and the enhance-
ment factor of the visible and infrared lumines-
cence of sample A and sample B

激发波长 /nm	发光强度×105				增强数	
	样品A		样品B		546.0	546.0
	546.0 nm	1531.0 nm	546.0 nm	1 531.0 nm	nm	nm
378.0	2.261	58.22	1.501	38.80	150.6%	150.1%
406.5	0.222	-	0.143	-	155.2%	—
520.5	2.090	51.49	1.376	33.96	151.9%	151.6%

(40 nm)@Er³⁺(0.5%): 铒碲发光玻璃与 (B) Er³⁺ (0.5%): 铒碲发光玻璃在 918~1680 nm 波长区间 的红外发光光谱, 图 8 与表 1 给出了红外光的发 光光谱测量结果。测量发现, 有位于在 979.0 nm 与 1531.0 nm 的两个红外发光峰, 容易指认出它 们为铒离子的 ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2} = {}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ 的荧光发 射跃迁^[16]。从测量的结果可以看到 378.0 nm 与 520.5 nm 光激发 (A) Ag(1.6×10⁻⁶ mol /L)@SiO₂ (40 nm)@Er³⁺(0.5%): 铒碲发光玻璃样品所造成 的 1531.0 nm 的红外光的发光峰强度分别为 5.822×10⁶ 与 5.149×10⁶, 同时 378.0 nm 与 520.5 nm 光激发 (B) Er³⁺(0.5%):铒碲发光玻璃样品所造 成的 1531.0 nm 的红外光的发光峰的强度则分

- 图 8 (A)Ag(1.6×10⁻⁶ mol/L)@SiO₂(40 nm)@Er³⁺(0.5%): 铒 碲发光玻璃样品 (A 蓝线) 与 (B) Er³⁺(0.5%): 铒碲发 光玻璃样品 (B 红线) 的 918 nm 到 1680 nm 波长范 围的红外发光光谱(激发波长为 378.0 nm)
- Fig. 8 The infrared luminescence spectra of (A) Ag $(1.6 \times 10^{-6} \text{ mol/L})@SiO_2(40 \text{ nm})@Er^{3+}(0.5\%):$ TeZnLa glass (blue line A) and (B) Er(0.5%): TeZnLa glass (red line B) from 918 nm to 1680 nm when excited by 378.0 nm

别为 3.880×10⁶ 与 3.396×10⁶。因此 378.0 nm 与 520.5 nm 光激发 (A) Ag(1.6×10⁻⁶ mol /L)@SiO₂ (40 nm) @Er³⁺(0.5%): 铒碲发光玻璃样品所造成 的 1531.0 nm 的红外光的发光峰的强度分别为 (B) Er³⁺(0.5%): 铒碲发光玻璃样品的 150.1% 与 151.6%, 即 Ag(1.6×10⁻⁶ mol /L)@SiO₂(40 nm) 的 引入导致铒碲发光玻璃的铒离子红外发光最大增 强了 151.6%。

7 寿命的测量与分析

用闪烁脉冲氙灯作为泵浦源,测量了(A) Ag(1.6×10⁻⁶ mol/L)@SiO₂(40 nm)@Er³⁺(0.5%): 铒碲发光玻璃样品与(B)Er³⁺(0.5%):铒碲发光玻 璃样品的550 nm 的荧光寿命^[16],图9给出了寿命 测量结果。由于铒的寿命很长,按照操作手册规 程采用尾部拟合的单指数办法,从实验所测量的 荧光寿命曲线图拟合出它的荧光寿命测量值。发 现样品(A)的550 nm的荧光寿命为τ_A(550)= 48.381 μs,样品(B)的550 nm荧光寿命为τ_B(550)= 43.765 μs。因此可以看出样品(A)相对于样 品(B)有很显著的寿命变长效应^[11,15,17],这与文 献[11,15]的报道一致,其原因可能为局域表面等 离子体的共振电场增强效应导致无辐射驰豫速率 减小^[11,15,17]。

 图 9 (A) Ag(1.6×10⁻⁶ mol /L)@SiO₂(40 nm)@Er³⁺(0.5%):
 铒碲发光玻璃样品 (A 蓝点) 与 (B) Er³⁺(0.5%):
 铒碲 发光玻璃样品 (B 红点) 在 550.0 nm 波长下的荧光 寿命(激发波长为 378 nm)

Fig. 9 The fluorescence lifetime of (A) Ag(1.6×10⁻⁶ mol/L)
@SiO₂(40 nm)@Er³⁺(0.5%):TeZnLa glass (blue dots A) and (B) Er(0.5%):TeZnLa glass (red dots B) at 550 nm luminescent wavelength were measured using a 378.0 nm pulsed xenon lamp as the pump source

该论文的玻璃基质为碲化物发光玻璃 70TeO₂-25ZnO-5La₂O₃-0.5Er₂O₃, Ag@SiO₂ 为提 前制作好的纳米核壳结构, Ag核尺寸为 60 nm, 壳层厚度为 40 nm, 随后直接外掺引入到铒碲发 光玻璃内,这些 Ag@SiO2 掺入玻璃体内后,就会 分散在玻璃体内,从而会导致铒离子发光的增 强。而且由于银的表面等离子体吸收峰恰好位 于 546.0 nm, 它与铒的发光峰 546.0 nm 完全共 振,因此,Ag@SiO2对铒碲发光玻璃的常规光致 发光的共振增强作用非常显著[17]。对于 Ag@SiO, 银纳米核壳结构增强铒离子常规光致发光的机 理,认为它主要为 Ag@SiO2 银纳米核壳结构的局 域表面等离子体共振,造成银纳米结构附近产生 的局域电场的强度加强很多,它远大于入射光的 电场强度,从而导致 Ag@SiO2 银纳米核壳结构对 入射光产生非常强烈的吸收与散射,因此导致荧 光增强,这即为银纳米核壳结构的局域表面等离 子体共振局域场的场增强效应[17]。

银的表面等离子体增强发光的工作已经有很 好的研究成果,并且受到了广泛的应用。但在玻 璃体内复合单纯的 Ag 纳米颗粒的银的表面等离 子体增强发光的倍数都比较小,因为在纳米金属 颗粒表面和稀土离子发光中心表面相距小于 10 nm 左右时,就会出现强烈的非辐射能量传递,它导致 发光中心的能量会通过非辐射能量迅速传递给纳 米金属颗粒,从而引起发光中心的发光淬灭。而 把金属 Ag 纳米颗粒用 SiO₂ 以核壳结构的形式完 全包覆时,可以有效防止金属 Ag 纳米颗粒被氧 化,更能大幅减少背向非辐射能量传递。用氧化 硅壳层把金属 Ag 纳米颗粒包裹起来, 通过控制 氧化硅壳层的厚度和总体质量,就能大幅提高金 属 Ag 等离子体对发光中心的发光增强效果。不 过,由于金属表面等离子体共振只是局域在亚波 长附近的范围,因此对于纳米核壳结构的壳层厚 度要求较高,在玻璃体之外的诸多材料中已证实 Ag@SiO₂纳米核壳结构相对于复合单纯的 Ag 纳 米颗粒能大幅增强发光强度,但因在玻璃体内 难于直接引入 Ag@SiO₂ 纳米核壳结构,因此只 能引入单纯的 Ag 纳米颗粒, 故在玻璃体内复合 单纯的 Ag 纳米颗粒银表面等离子体的工作所增 强的发光倍数都比较小。虽然本文发光强度的增 强还不是很多,但毕竟所提出的创新思想有可能 对此有所突破,很有可能会较大幅度增强发光强 度,促进银等金属表面等离子体增强发光这一领

域的工作[19,21]。

8 结 论

本文通过实验发现 (A) Ag(1.6×10⁻⁶ mol/L)@ SiO₂(40 nm) @Er³⁺(0.5%):铒碲发光玻璃相对于 (B) Er³⁺(0.5%) 样品的可见光与红外光的激发光 谱强度的最大增强依次为 149.0% 与 161.5%; (A)

参考文献:

Ag(1.6×10⁻⁶ mol /L)@SiO₂(40 nm)@Er³⁺(0.5%):铒 碲发光玻璃相对于 (B) Er³⁺(0.5%) 样品的可见光 与红外光的发光光谱强度的最大增强依次为 155.2% 与 151.6%。Ag@SiO₂ 银纳米核壳结构增 强铒碲玻璃发光的机理为: Ag@SiO₂ 银纳米核壳 结构的局域表面等离激子体共振, 造成其纳米核 壳结构附近的局域电场的较大加强, 从而使其发 光强度显著加强最终使寿命延长。

- [1] XUE B, WANG D, ZHANG Y L, et al.. Regulating the color output and simultaneously enhancing the intensity of upconversion nanoparticles via a dye sensitization strategy [J]. Journal of Materials Chemistry C, 2019, 7(28): 8607-8615.
- [2] LIN L, YU ZH P, WANG ZH ZH, et al.. Plasmon-enhanced luminescence of Ag@SiO₂/β-NaYF₄: Tb³⁺ nanocomposites via absorption & emission matching[J]. *Materials Chemistry and Physics*, 2018, 220: 278-285.
- [3] ZHAO G Y, XU L ZH, MENG SH H, et al.. Facile preparation of plasmon enhanced near-infrared photoluminescence of Er³⁺-doped Bi₂O₃-B₂O₃-SiO₂ glass for optical fiber amplifier[J]. Journal of Luminescence, 2019, 206: 164-168.
- [4] PARK W, LU D W, AHN S M. Plasmon enhancement of luminescence upconversion[J]. Chemical Society Reviews, 2015, 44(10): 2940-2962.
- [5] ZHAO J Y, CHENG Y Q, SHEN H M, et al.. Light emission from plasmonic nanostructures enhanced with fluorescent nanodiamonds [J]. Scientific Reports, 2018, 8(1): 3605.
- [6] CHEN G X, DING CH J, WU E, *et al.*. Tip-enhanced upconversion luminescence in Yb³⁺-Er³⁺ codoped NaYF₄ nanocrystals[J]. *The Journal of Physical Chemistry C*, 2015, 119(39): 22604-22610.
- [7] HE J J, ZHENG W, LIGMAJER F, et al.. Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO₂@CaF₂: Yb³⁺, Er³⁺ hybrid core-shell-satellite nanostructures[J]. *Light:Science & Applications*, 2017, 6(5): e16217.
- [8] WANG D, XUE B, TU L P, et al.. Enhanced dye-sensitized up-conversion luminescence of neodymium-sensitized multi-shell nanostructures [J]. Chinese Optics, 2021, 14(2): 418-430.
- [9] YANG ZH, Ni W H, KOU X SH, et al.. Incorporation of gold nanorods and their enhancement of fluorescence in mesostructured silica thin films[J]. The Journal of Physical Chemistry C, 2008, 112(48): 18895-18903.
- [10] GEDDES C D, PARFENOV A, ROLL D, et al.. Silver fractal-like structures for metal-enhanced fluorescence: enhanced fluorescence intensities and increased probe photostabilities [J]. Journal of Fluorescence, 2003, 13(3): 267-276.
- [11] WANG Q R, ZHANG J, SANG X, et al.. Enhanced luminescence and prolonged lifetime of Eu-PMMA films based on Au@SiO₂ plasmonic hetero-nanorods[J]. Journal of Luminescence, 2018, 204: 284-288.
- [12] XU W, LEE T K, MOON B S, *et al.*. Broadband plasmonic antenna enhanced upconversion and its application in flexible fingerprint identification[J]. *Advanced Optical Materials*, 2018, 6(6): 1701119.
- [13] RAJESH D, DOUSTI M R, AMJAD R J, et al.. Enhancement of down- and upconversion intensities in Er³⁺/Yb³⁺ codoped oxyfluoro tellurite glasses induced by Ag species and nanoparticles[J]. Journal of Luminescence, 2017, 192: 250-255.
- [14] DAS A, MAO CH CH, CHO S, et al.. Over 1000-fold enhancement of upconversion luminescence using waterdispersible metal-insulator-metal nanostructures [J]. Nature Communications, 2018, 9(1): 4828.
- [15] FARES H, ELHOUICHET H, GELLOZ B, et al.. Silver nanoparticles enhanced luminescence properties of Er³⁺ doped tellurite glasses: effect of heat treatment[J]. *Journal of Applied Physics*, 2014, 116(12): 123504.
- [16] 徐光宪. 稀土[M]. 2版. 北京: 冶金工业出版社, 1995.
 XUGX. Rare Earth [M]. 2nd ed. Beijing: Metallurgical Industry Press, 1995. (in Chinese)
- [17] 郭光灿,金怀诚,谢建平. 光学原子物理[M]. 合肥: 中国科学技术大学出版社, 1990.
 GUO G C, JIN H CH, XIE J P. *Optical Atomic Physics* [M]. Hefei: China University of Science and Technology Press, 1990. (in Chinese)
- [18] 王永生, 张雪强, 张光寅, 等. BaFCl: Eu²⁺中F色心的浓度和光激励截面与温度和紫外线的辐照波长的关系[J]. 发光

学报,1996,17(1):6-11.

WANG Y SH, ZHANG X Q, ZHANG G Y, *et al.*. The dependence of density and photostimulable cross section of F color centers in BaFCl: Eu^{2+} phosphors on temperature and UV-irradiation wavelength[J]. *Chinese Journal of Luminescence*, 1996, 17(1): 6-11. (in Chinese)

- [19] 彭皓,杨方,杜慧,等.基于Er³⁺掺杂上转换纳米粒子的生物成像研究进展[J]. 分析化学, 2021, 49(7): 1106-1120.
 PENG H, YANG F, DU H, *et al.*. Advances of Er³⁺ doped upconversion nanoparticles for biological imaging[J].
 Chinese Journal of Analytical Chemistry, 2021, 49(7): 1106-1120. (in Chinese)
- [20] 安西涛, 王月, 牟佳佳, 等. 超薄金壳包覆NaYF4: Yb, Er@SiO2纳米结构的可控合成与表面增强上转换荧光[J]. 发光学报, 2018, 39(11): 1505-1512.
 AN X T, WANG Y, MU J J, *et al.*. Controllable synthesis and surface-enhanced upconversion luminescence of ultra-thin

gold shell coated NaYF₄: Yb, Er@SiO₂ nanostructures[J]. *Chinese Journal of Luminescence*, 2018, 39(11): 1505-1512. (in Chinese)

- [21] 胡家乐, 薛冬峰. 稀土离子特性与稀土功能材料研究进展[J]. 应用化学, 2020, 37(3): 245-255.
 HU J L, XUE D F. Research progress on the characteristics of rare earth ions and rare earth functional materials[J]. *Chinese Journal of Applied Chemistry*, 2020, 37(3): 245-255. (in Chinese)
- [22] 李子娟,安雪,牛昊,等.高温溶剂热分解法合成NaYF₄:Yb³⁺,Er³⁺纳米粒子及其光谱特性[J].发光学报,2020, 41(9):1128-1136.

LI Z J, AN X, NIU H, *et al.*. Synthesis and spectral properties of $NaYF_4$: Yb^{3+} , Er^{3+} nanoparticles via thermolysis method[J]. *Chinese Journal of Luminescence*, 2020, 41(9): 1128-1136. (in Chinese)

[23] 赵兵洁, 赵金宝, 齐小花, 等. 基于BHHCT-Eu³⁺@SiO₂荧光稀土二氧化硅纳米颗粒的免疫层析试纸条检测卡那霉素 [J]. 分析化学, 2017, 45(10): 1467-1474.

ZHAO B J, ZHAO J B, QI X H, *et al.*. Development of immunochromatographic strips based on covalently conjugated BHHCT-Eu³⁺@SiO₂ for rapid and quantitative detection of kanamycin[J]. *Chinese Journal of Analytical Chemistry*, 2017, 45(10): 1467-1474. (in Chinese)

作者简介:

陈晓波(1963—),男,福建福州人,博士,北京师范大学应用光学北京重点实验室的教授、博士生导师,1983年、1986年与1992年于北京大学光学专业分别获得学士、硕士和博士学位。作为项目主持人已主持完成国家级和省部级课题项目18项,作为第一作者在Scientific Reports、Optics Express、Optics Letters等发表论文上百篇,其中SCI收录77篇,被引达五百多次。已获授权第一作者国家发明专利4项。入选1997年国家自然科学基金委员会国家教育部国家财政部等七部委的首批全国"国家百千万工程"第一、二层次人才和1995年国家教育部"跨世纪优秀人才"等奖励或荣誉十项。E-mail: chen78xb@sina.com