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Modeling of piezo-positioning system and sliding mode

inverse compensation control

LI Zhi-bin', XIN Yuan-ze', ZHANG Jian-qiang®*, SUN Chong-shang'
(1. College of Electrical Engineering and Automation, Shandong University of Science and Technology,
Qingdao 266590, China;
2. Center for Advanced Control and Smart Operations, Nanjing University, Suzhou 215163, China)
* Corresponding author, E-mail: zhangjqT170@163.com

Abstract: In order to enhance the control performance of piezo-positioning system, the influence of hyster-
esis characteristics and its compensation method are studied. Hammerstein model is used to represented the
dynamic hysteresis nonlinear characteristics of piezo-positioning actuator. The static nonlinear part and dy-
namic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlin-
skii (P-I) model and Hankel matrix system identification method, respectively. This model demonstrates
good generalization capability for typical input frequencies below 200 Hz. A sliding mode inverse compensa-
tion tracking control strategy based on P-I inverse model and integral augmentation is proposed. Experiment-
al results show that compared with PID inverse compensation control and sliding mode control without in-
verse compensation, the sliding mode inverse compensation control has a more ideal step response and no
overshoot, moreover the settling time is only 6.2 ms. In the frequency domain, the system closed-loop track-
ing bandwidth reaches 119.9 Hz, and the disturbance rejection bandwidth reaches 86.2 Hz. The proposed
control strategy can effectively compensate the hysteresis nonlinearity, and improve the tracking accuracy

and anti-disturbance capability of piezo-positioning system.
Key words: piezo-positioning system; hysteresis nonlinearity; Hammerstein model; Prandtl-Ishlinskii (P-I)
model; system identification; sliding mode control
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1 Introduction

Piezoelectric ceramic materials offer several
advantages, including compact size, high precision,
and rapid response times. These materials are
ideally suited for use in microprocessing techno-
logy, precision flow control, and accurate position-
ing systems. They have been extensively employed
across various sectors such as aerospace, medical,
energy, and defense!!. Nonetheless, piezoelectric
ceramics demonstrate hysteresis in their input-out-
put relationship, which can compromise the control
accuracy, degrade system stability, and potentially
induce system oscillations, thereby hindering fur-
ther advancements in these materials. Consequently,
the research into modeling hysteresis in nonlinear
systems and the development of high-performance
controllers are of paramount importance.

In terms of hysteresis nonlinear modeling,
there are currently three main types of hysteresis
nonlinear models: 1) Mechanism-based physical
models such as the Duhem model™, the Maxwell
model®!, and the Jiles-Atherton model™; 2) Phe-
nomenon-based mathematical models such as the
Prandtl-Ishlinskii model™, the Krasnoselskii-Pok-

doi: 10.37188/CO.EN-2024-0012

CSTR:32171.14.CO.EN-2024-0012

rovskii model, and the Preisach model™; 3) Intelli-
gent computing models like support vector ma-
chines™, neural networks®, and fuzzy methods!"".
Reference [11] solved the nonlinear parameters of
the electromechanical model for piezoelectric actu-
ators based on the Maxwell physical model, provid-
ing a nonlinear model for the actuator. However,
this requires in-depth research into complex physic-
al mechanisms and parameters with clear physical
significance, making this approach less versatile.
Reference [12] employed the Duhem model to es-
tablish the hysteresis model for piezoelectric actuat-
ors, achieving a model that could accurately de-
scribe the relationship between input voltage and
output displacement. The Duhem model has a clear
functional expression, which makes it more con-
venient than that in reference [11]. Reference [13]
improved the traditional Duhem model by dividing
it into two half loops for separate modeling and used
spline interpolation and neural network methods for
model parameter identification, yielding a more pre-
cise piezoelectric actuator hysteresis model.
However, it involves many parameters, making the

identification and computation process more com-

plex. Reference [14] derived a generalized nonlin-
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ear Preisach model applicable to piezoelectric actu-
ators based on the nonlinear Preisach model, which
enhances generalizability through phenomenologic-
al mathematical modeling. Reference [15] identi-
fied the functional relationship between hysteresis
elements and frequency for the model, establishing a
frequency-dependent Prandtl-Ishlinskii (P-I) model.
This model overcomes the disadvantage of the Pre-
isach model lacking an analytical inverse, simplify-
ing computation, but the rate-dependent model re-
quires input frequency determination in advance.

In the control of systems with hysteresis non-
linearity, there are primarily two methods of hyster-
esis compensation: inverse compensation and
closed-loop control. The inverse compensation ap-
proach involves mathematically constructing a hys-
teresis model and its inverse model. By incorporat-
ing the inverse model in series before the system, it
decouples the hysteresis system to eliminate the ef-

119, Tnverse compensation falls un-

fects of hysteresis
der open-loop control. To suppress various disturb-
ances present in the system, closed-loop feedback
(such as PID feedback composite control!'”, intern-
al model control™, etc.) can be added on top of in-
verse compensation. Closed-loop control does not
require inverse compensation; instead, it involves
considering the hysteresis nonlinearity directly dur-
ing the design process of the controller!”. This dir-
ect control method increases the burden on the
closed-loop control system to suppress disturbances
and the design of nonlinear control methods is com-
plex and difficult to implement. Currently, the con-
troller design is only possible for some nonlinear
systems with hysteresis characteristics, presenting
certain limitations.

Sliding mode control is a variable structure
control method that can design sliding modes inde-
pendent of external disturbances and the controlled
object. As a result, sliding mode controllers can ef-
fectively suppress various disturbances and the im-
pact of model uncertainties. This control method

features a simple and clear design approach and is

easy to implement, making it widely used to solve
control problems in complex nonlinear systems.
Therefore, sliding mode control strategies can be
used to implement tracking control in piezo-posi-
tioning systems. The control performance of sliding
mode control is closely related to the accuracy of the
identification model, and precise tracking of the
control system requires an accurate system model.

This study examines a piezo-positioning actu-
ator and introduces a Hammerstein model adept at
describing dynamic hysteresis. The static nonlinear
part of this model is characterized by a P-I model,
and the dynamic linear part is derived through sys-
tem identification via the Hankel matrix method.
This model is phenomenological, offering a straight-
forward and practical modeling technique that does
not necessitate the prior determination of input fre-
quency.

Based on the establishment of the model, this
paper first implements the P-I inverse model for
serial compensation of the hysteresis characteristics
of the piezo-positioning actuator. Then, using ap-
proximation methods and notch filter, the dynamic
linear part of the Hammerstein model is tuned to fa-
cilitate controller design. Considering that the hys-
teresis nonlinearity is difficult to fully counteract, a
sliding mode controller is designed to suppress the
residual hysteresis and external disturbances. To en-
hance the tracking performance of the system, an in-
tegral augmentation method is used in the sliding
mode control. Finally, real-time control experi-
ments are conducted, and the results show that the
proposed control strategy improves the control pre-
cision and stability of the piezo-positioning system,
and exhibits strong adaptability to different input

signals.

2 Modeling of piezo-positioning sy-
stem

2.1 Hysteresis characteristic

Hysteresis characteristics represent intrinsic
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nonlinear properties of piezoelectric ceramic materi-
als, significantly affecting the positioning accuracy
of piezo-positioning actuators in precision applica-
tions. These characteristics manifest as different dis-
placement values when the same excitation voltage
is applied to a piezo-positioning actuator during
voltage ascent and descent.

The hysteresis characteristics of piezoelectric
ceramics are categorized into static and dynamic
hysteresis nonlinearities. Static hysteresis nonlinear-
ity predominantly exhibits memory effects and
multi-valued mapping properties, implying that the
output of piezoelectric ceramics at any given time is
influenced not only by the current input but also by
previous inputs. Additionally, a single input can cor-
respond to multiple outputs, as shown in Fig.1(a)
(color online). Dynamic hysteresis nonlinearity, pri-
marily characterized by its frequency-dependent pro-
perties, demonstrates minimal variations in nonlin-
earity at low input frequencies, as shown in Fig.1(b)

(color online).
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Fig. 1 Hysteresis characteristic curves

2.2 Static nonlinear modeling based on P-I model

The P-1 model belongs to a phenomenological
hysteresis model that primarily employs a weighted
superposition of finite linear Play operators or lin-
ear Stop operators to model hysteresis nonlinearity.
This paper establishes a P-I model using the Play
operator, thereby simulating the system’s hysteresis
characteristics effectively.

The Play operator is defined as:

y(@) = L(x(1),y(1;),r) =

max {x(f) — r,min [x() + .y (&)]} (1)

where: (< <SSt <t,; x(¢) is the input
signal; r is the threshold of the Play operator.

The initial conditions for the Play operator are:

y(to) = L(x(%),0,r) =
max {x(t,) — r,min [x(¢y) + r,0]}

(2)

Fig.2 illustrates the relationship between the in-
put signal x and the output signal y of the Play oper-

ator, manifested as a parallelogram structure.

(o)

A
0/{/} x(1)

Fig. 2 Play operator

Upon the weighted superposition of various
play operators, the P-I model with hysteresis charac-
teristics is obtained, and its output formula is as fol-

lows:

z(t) = ijLj (x(®),y; (), 1)) =

=1

ijmax{x(t) —rpmin[x(t) +r,y; @]}, (3)
j=1

where: r; denotes the threshold of the j-th Play oper-

ator, satisfying 7,=>0; w;, represents the weight of the
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j-th Play operator; and » signifies the number of
weighted superpositions.

For the P-I model, the weighting coefficients
and threshold coefficients can be identified from the
experimental data of the system's input and output.
By selecting appropriate weighting coefficients and
threshold coefficients, the P-I model can describe
the actual hysteresis characteristic curve of piezo-
electric ceramics.

It is important to note that the P-I model be-
longs to the category of static nonlinear models,
while the actual hysteresis nonlinearity of the piezo-
positioning actuator is frequency-dependent. There-
fore, for the practical piezo-positioning system, it is
essential to fully consider the variations in input fre-
quency. It is necessary to establish a dynamic hys-
teresis model that is related to the input signal fre-
quency on the basis of the static nonlinear model.
2.3 Dynamic modeling based on hankel matrix

identification method

To establish a dynamic hysteresis model for the
piezo-positioning system, this paper adopts the
structure of the Hammerstein model to model the
piezo-positioning system, connecting the static non-
linear model with the dynamic linear model in
series. The structure of the Hammerstein model is
shown in Fig.3. Here, u(f) represents the excitation
voltage, and y(¥) represents the generated displace-

ment signal.

u(f) | Static nonlinear Dynamic linear | ()
—p] e
model model

Fig. 3 Hammerstein model structure

For the Hammerstein model of the piezo-posi-
tioning system, the static nonlinear part of the mod-
el is described by a P-I model, while the dynamic
linear part is described by the system model ob-
tained through the Hankel matrix system identifica-
tion method.

The fundamental principle of system identifica-
tion method is to utilize real input-output data of the
system to obtain an equivalent model of the identi-

fied system™". In this paper, the dynamic linear part

of the piezo-positioning system's Hammerstein mo-
del is solved using the Hankel matrix constructed
from the system's impulse response sequence, res-
ulting in a more accurate model. The identification
theory is as follows.

Given the input-output data of the system, the
autocorrelation sequence and cross-correlation se-
quence are obtained as R,, and R, respectively,

defined as:

N-1
R, (kt) = % Z u(it)yuit — kf)
i=k
NS

N-1
Rukt) = 3" (it ko)
i=k

where, k=0, 1, 2, --- , N-1, N is the number of in-
put sequences in one period, u represents the input
data, and y represents the output data.

The state equation of a discrete system is giv-

en by:

{x((k + 1)t) = Ay x(kt) + Bu(kt) (s

y(kt) = Cyx(kt) + Dpu(kt)

If the impulse response of the discrete linear
system is denoted as a(kt), where £k = 0, 1, 2, -,
then the relation between the correlation function

and the impulse response is:

+0o

R, (Nf) = Za/( JORW(Nt=jt) . (&)

j=1

The Hankel matrix H is constructed from the

impulse response as:

a(t) a(21) “e a(nt)
a(21) a(31) a((n+ 1))
a(;lt) a((n + 1) a/((2n'— 1)

7

The relationship between the Hankel matrix
obtained from the system's impulse response and the
state-space equation is:

o

CA,

H = ChAh2 [Bh AhBh Athh . ] (8)



6 FEDES (30

#18 %

The singular values of the Hankel matrix can
indicate the importance of each mode of the system,
thereby allowing the selection of the system's order
based on these singular values. By arranging the sin-
gular values in descending order, the system order
can be determined based on the locations of signific-
ant changes in the singular values.

Therefore, singular value decomposition of the
Hankel matrix is performed, and further decomposi-

tion of the results yields:

H =Udiag| o
(v ]diag{z,z}[ v -
1 2
U DY VIT+UY VT2 U YV
1 2 1

o, }VT:

9

where, g, ‘- g, are the singular values of the Hankel
matrix, witho;>0, U, =[u, - -u,], Zl =diag{oy,  ,0,},
and V; =[v;--v,].

In accordance with formula (8), the matrices C,

and Bj, can be selected as follows:

Cthldiag{ oo e \/O_',}(Firstrow)

B, ~diag{ o -+ &, |V](First column)
(10)

Furthermore, a new Hankel matrix H,; can be

constructed based on the impulse response:

a(21) a(31) a((n+ 1))
a(31) a(4t) a((n+2)r)
H, = . . . =
| a((n+ 1)) a((n+2)) a(2nt)
G,
ChAh n—1
. |A] By ABL - AB
L Cv}li4hn_l
U, /ZAh /ZVIT . (11)
1 1
By decomposing and representing the matrix
A, as:

Usually, in engineering systems, it is assumed
that D, = 0. By following the aforementioned steps,
a mathematical model based on Hankel matrix iden-
tification method can be obtained. With the matrices
A, B, C,, and D, calculated, the transfer function
can be determined, establishing the mathematical
model of the system and obtaining the dynamic lin-
ear part of the piezo-positioning system's Hammer-

stein model.

3 Model identification and testing

3.1 Introduction of experimental platform

In accordance with the characteristics of the
piezo-positioning system, an experimental platform
as depicted in Fig.4 was set up. The entire experi-
mental platform comprises a piezo-positioning actu-
ator, an AD conversion module, a DA conversion
module, a dSPACE simulation platform, a system

controller, and an upper computer.

Signal monitor &
Voltage amplifier

Fig. 4 Experimental platform of piezo-positioning system

3.2 Parameter identification

As deduced from the previous description,
when a low-frequency voltage signal is applied to
the piezo-positioning actuator, the output hysteresis
curve changes very minimally, making it approxim-
ate to a static hysteresis system. Therefore, in this
study, the static non-linear part of the Hammerstein
model is identified at a frequency of 1 Hz, namely
the P-I model. The accuracy of the P-I model is
closely related to the number of Play operators. To
balance the model accuracy and computational
speed, 20 Play operators were chosen in the experi-
ment to fit the static hysteresis curve. The fitting

results of the threshold coefficient » and the weight
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coefficient w are as follows:

r=[0 015 030 2.85 ]T

w:[0.5597 0.1374 0.0180 —0.0058]T'

(13
The model accuracy is represented by the relat-

ive error (RE) and the root mean square error
(RMSE), defined as:

RE= |-

G0 - y(@))®
=1 . ’

()’

QLY

i=1

— N (15
where $(i) is the model output and y(i) is the actual
system output.

When the input sinusoidal signal has a fre-
quency of 1 Hz, the hysteresis curve output by the
P-I model matches the hysteresis curve measured
from the piezo-positioning system, as shown in
Fig.5 (color online). The modeling errors, RMSE
and RE, are 0.0051 pm and 0.0034 pm, respect-
ively, indicating excellent modeling results for the

static nonlinear part.

2.5

—— Modeling curve
Experimental curve

—_ —_ )
=] W (=]

Output displacement/pum

4
o3

0 0.5 1.0 1.5 20 25 30
Input voltage/V

Fig. 5 Modeling and measured hysteresis curves

Then, proceed with the identification of the dy-
namic linear part of the Hammerstein model. Once
the P-I model is obtained, its inverse model can be

calculated (the method for solving the inverse mod-

el is detailed in Section 4.1), then apply the derived
P-I inverse model to the system's feedforward chan-
nel, and further identify the entire system using the
Hankel matrix system identification method, thereby
obtaining the mathematical model of the dynamic
linear part.

When collecting input-output data of the sys-
tem, the input voltage signal is a pseudo-random
signal with an amplitude of 5V and a length of
14 bytes. Based on the input-output data, the sys-
tem model is identified. The input-output data ob-
tained from the experiment is shown in Fig.6 (color

online).

Input data

,S(WI
/’2 000 2050 2100

Voltage/V

A & & & & O QO
N bp“ b@ N Q@ NUERNY b@
v SEEENAREN N

Sampling point

Response data

R ———

-5

Displacement/pum
[«

Q Q \} \} Q Q \} \} Q
ST F FFSF S S
N ™ © \Q \'1/ \b\ \‘o
Sampling point

Fig. 6 Input and output data of piezo-positioning system

The system's impulse response can be obtained
based on the input-output data of the system, then a
Hankel matrix is constructed based on the impulse
response, and its singular value decomposition's per-
formal. The resulting singular value distribution is

shown in Fig.7.

0.8

0.7 [
*
0.6
2
=05
>
504
&
£03
wn
021 4
0.1} 4

0 Hiolay
0 10 20 30 40 50 60 70
Number of singular values

Fig. 7 Singular value distribution
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Upon observing Fig.7, it is evident that there is
a significant jump between the first 6 data points,
and from the 7th data point onwards, the singular
values almost approach zero. After repeated experi-

mental comparisons, the optimal choice for the sys-

3.860 8(s+3.03 x 10*)(s2 +213s5+3.24 x 10%)

tem order is determined to be 6th order. Based on
the determined system order and the previous out-
lined steps for Hankel matrix identification, for the
system of 6 th order, the identified transfer function

of the dynamic linear part is as follows:

2_1.383x 10%s+1.141 x 108
_(s X s+ X ) . (16)

G(s) =

3.3 Model validation

Firstly, the accuracy of the identified model is
verified in the frequency domain. The comparison
graph of the numerical solution obtained by the im-
pulse response method with the frequency response
of the identified system, as shown in Fig.8 (color
online), reveals a good fitting effect before the fre-
quency of 1000 Hz. This validates the accuracy of
the identification results obtained by the Hankel

matrix system identification method.

g 0
3
2 50
= Real system
‘z%b ~100 | — Nominal model
10° 10! 10? 10°
Frequency/Hz
400
& 200
2 0
=
a~ —200
—400 = ‘ ‘
10° 10! 10? 10°
Frequency/Hz

Fig. 8 Comparison diagrams of frequency response

Further validating the accuracy of the model
by inputting specific frequency sinusoidal signals
ranging from 1to 200 Hz into both the actual
system and the identified system, and examining
the model in the time domain. Tab.l shows the
errors between the output of the Hammerstein
model and the actual output of the piezo-position-
ing system. By observing the data in the table, it can
be noticed that the error between the model output
and the system output is very small, thus further
confirming the effectiveness of the constructed

model.

" (5+2001)(s+628.4)(s2 + 1 884s+3.489x 10°)

(s> +138.85+9.957 x 10°)

Tab.1 Model test errors at different frequencies
Frequency (Hz) RMSE (um) RE

1 0.1835 0.0121
10 03141 0.0214
30 0.3538 0.0244
50 0.3106 0.0219
70 0.2557 0.0185
100 0.2289 0.0173
130 0.2572 0.0201
160 03717 0.0297
200 0.4345 0.0365

4  Controller design

4.1 Feedforward control based on P-I inverse

model

To mitigate the impact of the hysteresis charac-
teristic of the piezo-positioning actuator, a feedfor-
ward control approach can be employed. In this pa-
per, the inverse model of the established P-I nonlin-
ear model is derived, and this inverse model is used
as a feedforward controller in series with the piezo-
positioning actuator to compensate for the nonlin-
ear error caused by the hysteresis characteristic. The
structure of the feedforward compensation is illus-
trated in Fig.9. Here, u represents the input signal, x
denotes the output of the feedforward controller, and

y signifies the output signal.

u P-I inverse X | Piezo-positioning | Y
model g actuator

Fig. 9 Block diagram of P-I inverse model feed forward

control

The P-I model itself possesses the characterist-

ic of analytic inverse. The inverse model of P-I,
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when connected in series with the piezo-positioning
system model, can be constructed into a pseudo-lin-
ear functional relationship, thereby presenting a lin-
earized relationship between the input and output of
the entire system. The P-I inverse model also falls
under the category of nonlinear models, with its
parameters derivable through mathematical calcula-
tions based on the parameters of the P-I model. The
organizational structure of the P-I inverse model re-

mains a combination of a finite number of hyster-

esis operators and corresponding weight coeffi-
cients. Its expression is as follows:
u(t) = ) @ {max {y()—r/,
i=1
min [y(0) +r,y @]}, a7
in the expression:
1
wi=—, 18
W
W, = % , ay
J=1 J=1
ri= ) wiri-r) , 200

4.405x 10%(s +3.03x 10%)

where ;" and r;' represent the weight coefficients
and threshold coefficients of the P-I inverse model.

The feedforward control structure obtained
from the P-I inverse model belongs to open-loop
control, with poor disturbance rejection capability
and stability. In order to enhance the reliability of
practical engineering applications, and considering
the presence of external disturbances, a control
method combining feedforward control with sliding
mode closed-loop control will be further employed.
4.2 Model performance regulation

The transfer function of the dynamic linear part
of the piezo-positioning system model is depicted as
in equation (16), revealing the presence of unstable
zeros in the right half-plane, indicating that the iden-
tified function is non-minimum phase. Designing a
controller for non-minimum phase systems is not-
ably challenging, particularly as the unstable zeros
of this transfer function are significantly far from
the imaginary axis. Therefore, this study employs an
approximation approach by directly eliminating the
unstable zeros while ensuring minimal alteration in
system characteristics. By approximating the un-
stable zero in equation (16) as s approaching 0, the

resulting transfer function becomes minimum phase:

(52 +2135+3.24 % 10°)

Gu(s) =

we proceed with the subsequent design based on this.

From Fig.8, it can be observed that the system's
frequency response curve exhibits prominent peak
and valley. These can be mitigated by employing a
notch filter for bandwidth adjustment, effectively
eliminating the peak and valley in the high-fre-
quency range, resulting in a smoother overall curve
and thus enhancing the system's bandwidth. The
principle behind the notch filter devised in this study
is based on the positions of the zeros and poles in
the frequency response plot (at 288 Hz and 502 Hz),
allowing for the direct cancellation of the system's
zeros and poles, thereby optimizing the model. The

designed notch filter, denoted as G}, is as follows:

(s+2001)(s+628.4)(s> + 1 884s+3.489% 10°) (s> + 138.85 +9.957 x 10°)

, QD

3.24(s* + 138.85+9.957 x 10°)
9.957(s>+2135+3.24x 10%)

G(s) = (22)

The transfer function of the system after per-
formance adjustment by cascading the notch filter

with the system is:

an(s) =
1.433x 10%(s +3.03 x 10%)

(s+2001)(s+628.4)(s2 + 1 8845 +3.489 x 10°)
(23)

The performance adjustment effect of the mod-
el after incorporating the notch filter is illustrated in
Fig.10 (color online). The notch filter not only op-
timizes the model but also achieves a reduction in

the order of the piezo-positioning system's linear
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model, from the original 6th order to the 4th order,
thereby facilitating the subsequent design of sliding

mode controllers. Equation (23) is transformed into

state space representation as:

—4513 -9.7x10° -1.154x10" -4.387x10"
1 0 0 0
A= 0 1 0 0 ’
0 0 1 0
T 24>
B= [ 1 000 ] ,
C=[0 0 1433x10° 4343x10” |,
D =10].
g 0 The state equation of the piezo-positioning ac-
E’ ;(5)8 tuator after feedforward compensation and perform-
§° -150 ance adjustment is as follows:
= 200
X=Ax+Bu
0 , 25
S -9 y=Cx
2 -180
£ 270 where A is the nxn matrix, B is the nxm matrix, and
7360100 10! 102 103 104 105 C iS the kxl’l matrix.

Frequency/Hz

Fig. 10 Model performance adjustment effect

4.3 Sliding mode controller design

After the implementation of feedforward con-
trol, the hysteresis nonlinearity of the piezo-posi-
tioning actuator is effectively counteracted. How-
ever, two issues persist in this hysteresis compensa-
tion strategy: firstly, it is challenging to achieve
complete compensation of the hysteresis nonlinear-
ity in practice, and secondly, the piezo-positioning
actuator itself exhibits parameter uncertainties and is
susceptible to disturbances. Therefore, this paper
proposes a control strategy based on P-I inverse
compensation. By utilizing feedforward control of
the inverse model to compensate for the hysteresis
characteristics, and following model performance
adjustment, a sliding mode controller is designed to
suppress the remaining hysteresis characteristics,
existing disturbances, and model uncertainties. As
shown in Fig.11, the sliding mode inverse compens-

ation control block diagram is depicted.

Notch |u. | P-I inverse

' '
' '

—»T—»" 5l SMC [ s Ly P odwy ) 5 2
filter model + | model '
' '
' '

Fig. 11 Block diagram of sliding mode control of piezo-

v

positioning system with inverse compensation

For the linear dynamic model of the system ob-
tained through system identification and model per-
formance adjustment, the state variables do not have
actual physical significance. In other words, if the
input voltage signal has actual physical meaning, it
is not possible to directly control the state variables
to achieve tracking performance. Therefore, accord-
ing to the internal model principle, an integral com-
ponent can be introduced to construct an integral
augmented system for achieving tracking perform-
ance.

The system's output y(¢) is required to track the
reference input 7(¢), with the error signal e(?) given
by:

e(®)=y@®)—r(t) . (26)

Introducing the integral of the error signal, de-

noted as p(f):

p() = fOT e(n)dr = IOT [y@) -r(®]dr . QD

Taking the derivative of the above formula

gives:

p(t) =e() = Cx()—r() . 28

Connecting the integral component will in-
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crease the system order, hence considering the in-
tegral p as an augmented state variable, the state
equation of the integral augmented system is formu-

lated as follows:

x_AOx+B+O

p C Oflp o |*“"| -r
x

= C 0

y=[c o]y

@L))

The above state equation can also be expressed

as:

x;,=A;x;,+Bu+Er
{d drd d (30)

y= Cdxd

After the augmentation of integrals, the system
transitioned from its original n dimensions to n+k
dimensions. Moreover, rank [B; A,B; A/B; A;B,
A;/B,] = 5 = nt+k. According to the necessary and
sufficient conditions for controllability of the sys-
tem, it is evident that the augmented system is con-
trollable. Therefore, it is possible to design a sliding
mode controller for the augmented controlled sys-
tem.

In designing a sliding mode controller, the ini-
tial step involves designing the sliding mode switch-
ing function, ensuring that it guarantees the asymp-
totic stability of the sliding motion and possesses
excellent dynamic characteristics®. Let the switch-

ing function be:

SZde , (&ID)

where M is the kx(ntk) coefficient matrix.
Therefore, the sliding mode equation for the
system during sliding motion on the switching sur-

face is:
i,=[1-BMB)'M|Ax; . (D

Due to the rank of B, being m, there exists a
non-singular linear transformation x, = T%, which
transforms the augmented system state equation in-
to the following form:

j:’:l — éll 4]2 -il o
-%2 A21 A22 -i-Z BZ

+[ 0 ]u , (33)

where, ¥, € R, %, €R", B, are mxm invertible
matrices.

The corresponding switching surface becomes:

S=MTx=Mx +MX%,=0 . 34

Furthermore, based on equation (33), it can be

obtained that:
.i'l ZAllfl—Alegllel =(A11—A12F)i‘1. (35)

The above equation is fully equivalent to the
sliding mode equation, indicating that the sliding
mode control system can be represented as an n+k-m
dimensional subsystem described by the above
equation. Moreover, since (A4, B,) is controllable, it
follows that (fin,fi]z) is also controllable, thus al-
lowing the poles of the aforementioned subsystem
to be arbitrarily placed by F.

According to equation (34), the coefficient

matrix M of the switching function is derived as:
M=[F M, |T" . (36)

Thus, the sliding mode switching function can
be determined, ensuring that the sliding mode mo-
tion is asymptotically stable.

Next comes the design of the sliding mode con-
trol law. In order to perform sliding mode motion
for the system, the control law must satisfy the

reachability condition:

S$<0 . 37

This study employs the hyperbolic tangent
function tanh(aS) to replace the sign function sgn(S)
typically used in exponential reaching laws, which
effectively reduces chattering. The improved expo-

nential reaching law is:

S = —etanh(aS) - kS (38)

where, >0, a>0, k> 0.
Subsequently, from the improved exponential
reaching law, the sliding mode control law u satisfy-

ing the reachability condition can be derived as:

u=—-(MB,) '(MA,x,+etanh(aS) + kS). (39)

The motion of the sliding mode control system
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consists of two parts. The first part is the motion " @0 Integrator [ Controller ] NOER | ] PLinverse L e e s

filter model actuator
stage where the system enters the switching surface S
o e . . . observer

from the initial point. By designing a Lyapunov i

function ¥(x,) = §°, since the sliding mode control
law u always satisfies the reachability condition, it
follows that V(x;)<<0. The second part is the mo-
tion stage of the system on the switching surface,
where the system's stability can be ensured as long
as the sliding mode switching function is appropri-
ately designed. In conclusion, it can be seen that the
sliding mode control system designed in this study
is asymptotically stable.

4.4 State observer design

To achieve sliding mode inverse compensation
control of the piezo-positioning system, it is neces-
sary to obtain the full-dimensional state variable x,
of the integral augmented system. The state variable
p in x, represents the integral of the error signal,
which can be directly measured, while the state vari-
able x does not have a physical meaning and thus
cannot be directly measured. In order to obtain the
state variable x, it is essential to design a state ob-
server for the original system.

For the original system (25), rank [CT A'C"
(A™’C" (A")’C™] = 4, it can be concluded from the
necessary and sufficient conditions for observabil-
ity that the original system is observable. The equa-

tion for the designed state observer is as follows:

¥=(A-GC)%*+Bu+Gy |, (400

where G represents the feedback gain matrix.
Constructing an asymptotic switching function

based on the estimated state £:
S=Mz, . 4D
Simultaneously, the sliding mode control law
of the system is also transformed to:
u=—(MB,) ' (MA&,+etanh(aS) + kS). (42)

At this point, the design of the piezo-position-
ing actuator integral augmented sliding mode in-
verse compensation control system is complete,

with its system structural diagram shown in Fig.12.

Fig. 12 Structural block diagram of piezo-positioning actu-

ator control system

5 Real-time control experiment

5.1 Open-loop inverse control experiment

To verify the hysteresis compensation effect of
the P-I inverse model, an open-loop inverse com-
pensation control experiment is first conducted. The
input is a sinusoidal signal with a frequency of 1 Hz
and an amplitude of 15 V. The obtained fitting ef-
fect of the compensated input and output is shown
in Fig.13 (color online), where it can be observed
that after the introduction of the feedforward con-
troller, the input-output curves of the system basic-
ally overlap, indicating a good compensation for the
hysteresis nonlinearity. It is also evident that hyster-
esis nonlinearity is highly intricate, making it im-
possible to achieve extremely precise modeling in
practice and completely compensate for all hyster-
esis characteristics, thus necessitating the use of
sliding mode control to further suppress the incom-

pletely compensated hysteresis nonlinearity.

DN W
S b O

—_
(=}

Output displacement/pum
9 O

(=]

(=]
W

10 15 20 25 30
Input voltage/V

Fig. 13 Control effect fitting diagram

5.2 Sliding mode inverse control experiment
Building upon the open-loop inverse compens-
ation control, the sliding mode closed-loop control
is then implemented based on the previously de-
signed sliding mode controller. In order to validate
the effectiveness and superiority of sliding mode in-
verse compensation control, this study designs a

comparative experiment involving PID inverse com-
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pensation control and sliding mode control without
inverse compensation.

During the experiment, through repeated para-
meter simulations and physical tuning, taking into
account the system's stability and robustness, para-
meter settings and adjustments were carried out. The
finalized pole configuration of the sliding mode
control equivalent subsystem (36) was determined
to be [-3000 £ 2001, —2 500 £ 150i], with its corres-
ponding state feedback matrix F = [5.67x10%,
8.28x10", 4.53x107, 1.10x10*]. Consequently, the
switching function coefficient matrix M = [1.46,
1.35x10% 5.15x107, 8.91x10", 14.07]. The pole
configuration of the state observer was set as
[-5000 + 5001, =3 000 + 200i], with its correspond-
ing feedback gain matrix G = [11.76, —0.01,
1.90x10°%, 1.83x10°]". The parameters for the im-
proved exponential reaching law were set as ¢ =
110, « = 2, k = 1200, under which better control
performance can be achieved.

For the PID inverse compensation control as
part of the comparative experiment, considering the
system control performance in both the time do-
main and frequency domain, the parameters of the
PID controller were ultimately set as K, = 0.42, K; =
344, K, =0.

5.2.1 Time domain performance test

Selecting a step signal as the system input to
test the control effect of sliding mode inverse com-
pensation control in the time domain, with a step
signal amplitude of 10 V and an expected output
displacement of 10 um. The step responses of the
three control schemes are shown in Fig.14 (color
online).

The system under PID inverse control exhibits
an overshoot of 10.5% in its step response, with a
settling time of 13.9 ms, using a +2% error band as
the criterion. On the other hand, the sliding mode
control without inverse compensation shows no
overshoot and a settling time of 9.0 ms. Similarly,
the sliding mode inverse control also demonstrates

no overshoot and a settling time of 6.2 ms. It is

evident that compared to PID inverse control, both
sliding mode inverse control and sliding mode con-
trol exhibit a significant reduction in overshoot. The
settling time of sliding mode inverse control is ap-
proximately 55.4% shorter than PID inverse control
and 31.1% shorter than sliding mode control. Fur-
thermore, the sliding mode inverse control shows al-
most no sign of oscillation, while the sliding mode
control exhibits slight oscillations due to the sys-

tem's non-linear characteristics.

12
10
g
=
°é 6
S 4
S ——PID control+Inverse
2 2 —SMC
A ——SMC+Inverse
OoF—— B Expected displacement
72 L
Q

5 N O N M N H
Q \S \S 3 v ¥ S X
Q'Q Q'Q Q'Q Q'Q Q'Q Q'Q Q'Q Q‘Q
Time/s

Fig. 14 System step response curve

5.2.2 Frequency domain tracking performance test

To assess the tracking control performance in
the frequency domain, a sinusoidal sweep signal
with frequencies ranging from 0.1 to 500 Hz, an
amplitude of 15 V, and a bias of 15 V is used as the
system input. The obtained closed-loop frequency
characteristic curves for the three control schemes

are depicted in Fig.15 (color online).

g o ]
3 10} » e ]
é —20 | ——PID control+Inverse ’3\ ]
——SMC s
:;GD —3(0 | —SMC+Inverse ‘ R ‘ v
90 ‘ .
> 0 |
5 -9 N
g —180 ¢ ]
= 270} y
=360
10° 10! 102
Frequency/Hz

Fig. 15 Closed-loop frequency characteristic curve

Based on the experimental results, the closed-
loop tracking bandwidth (defined at —3 dB) for the
system under PID inverse control is 91.5 Hz, for

sliding mode control is 110.1 Hz, and for sliding
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mode inverse control is 119.9 Hz. Comparatively,
sliding mode inverse control shows an increase in
closed-loop tracking bandwidth of approximately
8.9% and 31.0% when compared to sliding mode
control and PID inverse control, respectively. It is
evident that sliding mode inverse compensation con-
trol demonstrates significant advantages, showcas-
ing a more stable tracking control performance un-
der varying frequency sweep input signal.
5.2.3 Frequency domain disturbance rejection per-
formance test

To evaluate the disturbance rejection control
performance in the frequency domain, a sinusoidal
sweep signal with frequencies ranging from 0.1 to
500 Hz, an amplitude and bias of 1.5V, is intro-
duced as the disturbance signal. The system input is
set to 0. The disturbance rejection magnitude-fre-
quency characteristic curves for the three control

schemes are illustrated in Fig.16 (color online).

10
0
-10
—20
-30
—40
—50

Magnitude/(dB)

60 80 100120

-60 ——— PID control+Inverse
——SMC

=70

—— SMC+Inverse

—80

10° 10! 10?
Frequency/Hz

Fig. 16 Disturbance rejection magnitude-frequency charac-

teristic curves for three control schemes

After testing, it is determined that the disturb-
ance rejection bandwidth (defined at 0 dB) for the
system under PID inverse control is 59.9 Hz, for
sliding mode control is 63.9 Hz, and for sliding
mode inverse control is 86.2 Hz. Comparatively,
sliding mode inverse control shows an increase in
disturbance rejection bandwidth of approximately
34.9% and 43.9% when compared to sliding mode

control and PID inverse control, respectively. It is

References:

evident that sliding mode inverse compensation con-
trol exhibits a more effective disturbance rejection

performance.

6 Conclusion

This study examines the system complexity
characteristics of piezo-positioning systems and
their demanding control bandwidth. Our research
endeavors to develop a precise Hammerstein model
comprising a P-I model and a dynamic linear model
in series. Building upon this, we propose a sliding
mode inverse compensation control method that in-
tegrates a P-I inverse model with integral augmenta-
tion.

The experimental results demonstrate that the
dynamic hysteresis model of the piezo-positioning
system developed in this study offers excellent gen-
eralization across typical input frequencies below
200 Hz. The implemented sliding mode inverse
compensation control effectively mitigates hyster-
esis nonlinearity, significantly enhancing the sys-
tem's control precision and stability. Compared to
PID inverse control and sliding mode control with-
out inverse compensation, sliding mode inverse
compensation control achieves a step response free
of overshoot and oscillations, with a reduced set-
tling time of 6.2 ms. This method exhibits robust
resistance to hysteresis nonlinearity and external
disturbances, showing enhanced adaptability to vari-
ous input signals. The control system attains a
closed-loop tracking bandwidth of 119.9 Hz and a
disturbance rejection bandwidth of 86.2 Hz. This
study validates the effectiveness and superiority of
the sliding mode inverse compensation control ap-
proach in improving tracking accuracy and disturb-
ance rejection capabilities of piezo-positioning sys-

tems in practical engineering applications.
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