A ER-INC)

Chinese Optics B

Witnessing quantum phase transition in a non-Hermitian trapped ion system via quantum Fisher information
LIN Yu-Hao, YAN Kai, TAN Jia, CAO Zhao-Liang, HAO Xiang

Citation:

LIN Yu-Hao, YAN Kai, TAN Jia, CAO Zhao-Liang, HAO Xiang. Witnessing quantum phase transition in a non—Hermitian
trapped ion system via quantum Fisher information[J]. Chinese Optics, 2024, 17(6): 1467-1475. doi: 10.37188/C0O.EN-2024-0017

1 58, TeEL, AR, WA R, R i BT Fisher(E BAR AR AR LK ES T BE R G BT AR R EDES:, 2024, 17(6):
1467-1475. doi: 10.37188/CO.EN-2024-0017

View online: https://doi.org/10.37188/CO.EN-2024-0017

Articles you may be interested in

Decoherence of temporal quantum correlation in electrically controllable quantum—dots molecules
LA 5 00 B IS 1 R IBGR A T
Chinese Optics. 2023, 16(5): 1206 https://doi.org/10.37188/CO.EN-2022-0025

InGaAs/AlGaAs quantum well intermixing induced by Si impurities under multi—variable conditions
LA BSIZR TS FInGaAs/AlGaAs BT PHE LIS
Chinese Optics. 2023, 16(6): 1512  https://doi.org/10.37188/C0.2022-0257

InGaAs/GaAs(P) quantum well intermixing induced by Si impurity diffusion

SiZ " B F InGaAs/GaAs(Py i BHR 2058
Chinese Optics. 2022, 15(3): 426 https://doi.org/10.37188/C0.2021-0200

Topological circuit: a playground for exotic topological physics

W ——Hr M LR BT
Chinese Optics. 2021, 14(4): 736 https://doi.org/10.37188/C0.2021-0095

Size and temperature dependence of spectral transmittance for CdSe colloidal quantum dot film filters

CdSedgt 1B E A RST | Il BE RO A4l e

Chinese Optics. 2021, 14(1): 163  https://doi.org/10.37188/C0.2020-0198

A review of the effect of GaN-Based Micro—LED sidewall on external quantum efficiency and sidewall treatment techniques

AR SEMicro—LEDIBE X &M 5303 B 52 e S BE b PR AR ZE A
Chinese Optics. 2023, 16(6): 1305 https://doi.org/10.37188/C0.2023-0091


http://www.chineseoptics.net.cn
http://www.chineseoptics.net.cn
http://www.chineseoptics.net.cn/cn/article/doi/10.37188/CO.EN-2024-0017
http://www.chineseoptics.net.cn/cn/article/doi/10.37188/CO.EN-2022-0025
http://www.chineseoptics.net.cn/cn/article/doi/10.37188/CO.2022-0257
http://www.chineseoptics.net.cn/cn/article/doi/10.37188/CO.2021-0200
http://www.chineseoptics.net.cn/cn/article/doi/10.37188/CO.2021-0095
http://www.chineseoptics.net.cn/cn/article/doi/10.37188/CO.2020-0198
http://www.chineseoptics.net.cn/cn/article/doi/10.37188/CO.2023-0091

7% 46 rhEDGE: (Hrsesg) Vol. 17 No. 6
2024 4F 11 H Chinese Optics Nov. 2024

XEHS 2097-1842(2024)06-1467-09

Witnessing quantum phase transition in a non-Hermitian trapped ion

system via quantum Fisher information

LIN Yu-Hao, YAN Kai, TAN Jia, CAO Zhao-Liang, HAO Xiang"
(Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu
Provincial Higher Education Institutions, School of Physical Science and Technology,
Suzhou University of Science and Technology, Suzhou 215009, China)

* Corresponding author, E-mail: xhao@mail.usts.edu.cn

Abstract: Quantum Fisher information is used to witness the quantum phase transition in a non-Hermitian
trapped ion system with balanced gain and loss, from the viewpoint of quantum parameter estimation. We
formulate a general non-unitary dynamic of any two-level non-Hermitian system in the form of state vector.
The sudden change in the dynamics of quantum Fisher information occurs at an exceptional point characteriz-
ing quantum criticality. The dynamical behaviors of quantum Fisher information are classified into two dif-
ferent ways which depends on whether the system is located in symmetry unbroken or broken phase regimes.
In the phase regime where parity and time reversal symmetry are unbroken, the oscillatory evolution of
quantum Fisher information is presented, achieving better quantum measurement precision. In the broken
phase regime, quantum Fisher information undergoes the monotonically decreasing behavior. The maximum
value of quantum estimation precision is obtained at the exceptional point. It is found that the two distinct
kinds of behaviors can be verified by quantum entropy and coherence. Utilizing quantum Fisher information
to witness phase transition in the non-Hermitian system is emphasized. The results may have potential applic-

ations to non-Hermitian quantum information technology.
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1 Introduction

Hermitian and non-Hermitian Hamiltonian are
the two types of quantum systems. It is well known
that the dynamics of systems governed by Her-
mitian Hamiltonian are referred to as unitary. In this
case, the Hermitian Hamiltonian is characterized by
real energy spectrum. However, Non-Hermitian
Hamiltonian system undergoes non-unitary evolu-
tion which corresponds to an open quantum system
influenced by an external environment. In such sys-
tems, it provides complex eigenvalues and non-or-
thogonal eigenvectors. Due to the rapid develop-
ment of non-Hermitian optical and micro-cavity ex-
periments!’, a class of non-Hermitian Hamiltonian
with parity-time(PT) symmetry exhibiting real en-
ergy eigenvalues have attracted numerous atten-
tions.

It has been demonstrated that non-Hermitian
systems in the parameter space usually experience
the quantum criticality at an exceptional point (EP).
Arising from the coalescence of both eigenvalues
and eigenvectors, non-Hermitian systems with PT
symmetry exhibit quantum phase transition from un-

broken phase regime to broken one. In recent years,

doi: 10.37188/CO.EN-2024-0017
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some new features at exceptional points can be ob-
served in non-Hermitian system, such as single-
mode lasing?, enhancing optical response behavi-
ors®™, PT-symmetry-breaking chaos™, flexible swit-
ching for light transmission’™, loss-induced transpar-
ency, and EP-enhanced sensing®. Therefore, a
fundamental issue is how to effectively detect and
characterize critical phenomena in non-Hermitian
systems’!,

In some works, various kinds of witnesses have
been put forward to capture the features of quantum
phase transitions, including Hilbert-Schmidt spe-
ed"”, quantum coherence!'!! and entropy!'?. Althou-
gh these quantities are sensitive to quantum critical-
ity, they are theoretical evidences which are indir-
ectly observable. To directly measure critical phe-
nomena, we expect to apply metrological methods
from the viewpoint of parameter estimation. This
motivation stimulates us to explore the relationship
between quantum metrology and quantum phase
transition in non-Hermitian systems. It is well
known that quantum Fisher information (QFI) is
usually exploited to evaluate the precision of para-

meter estimation!"

. Consequently, an interesting
question arises: how to determine the PT phase

transitions from the perspective of quantum para-
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meter estimation. In the present work, we provide
the witness based on quantum Fisher information to
accurately characterize signatures of quantum critic-
al transitions in non-Hermitian ion trap systems with
PT symmetry.

This paper is organized as follows. In Sec. II, a
normalized density matrix in the form of state vec-
tor is used to define quantum Fisher information in a
non-Hermitian PT-symmetric system. In Sec. 111, we
provide a general formulation to characterize the
non-unitary dynamics of any two-level non-Her-
mitian system. By using the general approach, we
investigate the dynamics of quantum Fisher inform-
ation in single ion trapped system. The physical re-
lationship between quantum parameter estimation
and quantum phase transition is studied in Sec. IV.
The exceptional criticality is also verified by
quantum entropy and quantum coherence. Finally, a

conclusion is given in Sec VI.

2 Quantum Fisher information with
PT symmetry

To obtain the QFI for non-Hermitian system,
let us start by reviewing some fundamental features
of the QFI definition. For a quantum state p, with an
unknown parameter 6, the QFI F, provides the ulti-
mate precision limit according to the estimation the-
ory. It is known as the quantum Cramér-Rao bound,
V(0)=1/(nFy) where n is the number of measure-
ments. The large value QFI corresponds to the high
precision of parameter estimation. The general ex-
pression is written as Fy = Tr[Lepg] where the sym-
metric logarithmic derivative operator L, satisfies
(Lgpg + poLo)/2 = Ogpg and arbitrary states py can be
diagonalized"*"). Note that a Hermitian system gov-
erns an unitary evolution which obeys the conserva-
tion of the trace of the density matrix and the eigen-
vectors are orthogonal and normalized. However,
the dynamics of a non-Hermitian quantum system is
no more unitary and the estimated state is no longer

[16]

normalized. According to the derivation'®, we need

to normalize the evolved state as Py =04/ 1(0p)
where Tr(py) is the trace of the estimated density
matrix. In the condition of PT symmetry, the dens-
ity matrix of a d—level system is Hermitian which
satisfies pz = py, and then can be expressed as a lin-

ear superposition of a complete set of Hermitian op-

1< .
erators. In the case of d =2, py(t) = Ez/lj E;,

A]:O
where the coefficients A;(f) = Tr[pg (HE j] are real.
Here, {E"j}={0'0,0'1,0'2,0'3} is a complete set of
Pauli operators and 7'r(pg) = Ay(f) is the normalized

parameter. If the normalized matrix is Py =

Z cilwiywi , the QFI F is written as

J

0
_, Z | 1| Boo )| o

Cj + Cy

where the relation of eigenvalues c¢;+c, #0 is re-

Ao (t)iri ,Mﬁ 6]
j=1

240 (?) ’

|l//1,2> =

quired and ¢, =
A () —idy (1)
3
L)+ Z / ﬂ? ®) denote the eigenvalues and

Jj=1
eigenvectors of the estimated state respectively.

3 Dynamics of a non-Hermitian sys-
tem in the form of vectors

To demonstrate the dynamical behavior of QFI
in a non-Hermitian system, we consider a general
two-level non-Hermitian system whose Hamiltoni-

an is written as

A

H=H.+H (2)
where a Hermitian part A, = ' = Z o, E,» an anti-

_H = Zﬁ[El and the coeffi-

cients {a;,B;} are real. The state evolution of the

Hermitian one g =

non-Hermitian system is governed by the time-de-
pendent Schrodinger equation''”'® which reads as,

20— (Ap-p A) =

~2[Ap@]-{Ap0) B
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here, the square bracket [-,-] is the commutator, the
curly bracket denotes the anti-commutator {:,-} and
the density matrix p (f)describes the state of the non-
Hermitian system. By using the vector formalism
/_l)(t) of the density matrix, the dynamics of the non-

Hermitian system can be expressed as,

6—» P
E/l(t)zg“-/l(t) , 4)

~

where the dynamical mapping matrix is ¢ =

Bo B B B
21 8 B a -
Al B as B —ay
By —ay ar By
(1) = (A, A,, A5, A;)T describing the evolved state at

and the evolved vector

any time. In general, the state vector j(z) is given
by Z(r) = ¢ 1(0) and 7(0) represents the vector of

an initial state. With respect to the diagonal form of
4
= Z h;[v:)(v;| » the exponential function is given

by elZl: VRV~ and the i-th column of the trans-
formation matrix V is the corresponding eigenve-
ctor |v;). The diagonal matrix R = diag(e™’, ™', "',
e"") is determined by the eigenvalues of the map-
ping matrix.

To study quantum dynamics of a non-Her-
mitian system, we take into account a single-ion
system where the PT-symmetric Hamiltonian with
balanced gain and loss has been realized in the ex-
periment". The experimental setup involves a
trapped 40Ca" ion in a magnetic field. Initially pre-
pared in the ground state |g) = |2S _12), the system is
excited to an upper state |e) = |2D5/2> using a laser
with a wavelength of 729 nm. Another laser at
854 nm induces a controllable loss in |e¢) which is
coupled to a short-lived level |2P3 12y and quickly de-
cays to the state |d) = )251/2). By means of laser
driving, the coherent energy transition between |e)
and |g) can be performed and the excited state un-
dergoes the tunable loss, as shown in Figure 1. From
the viewpoint of open quantum systems, the states
of |e) and |g) experience the interaction with the dis-

sipation environment |d) at a loss rate.

-1
1
1
1
1

le)=FDs.»)

Q

1
1
i
1
1
I
I
I
d)=S,) :
1

v

| F -

1
1
1
1
1
1
1
1
1
1
1
1
U 2)=S
1

Fig. 1 The two levels of the ion system with balanced gain

and loss

In this case, the effective two-level system is

described by the non-Hermitian Hamiltonian,

)
Ap=—o—itos—ill | (5)
2 27371

where y is the gain-loss rate and £ is the coherent
Q_ \
coupling.  Correspondingly, d/’=(0,5,0,0) b=

T
(—%,0,0,—%) can characterize Hermitian part and

anti-Hermitian one of the non-Hermitian Hamiltoni-
an in the trapped ion system. Additionally, some ex-
perimental setups® of non-Hermitian system are

realized in the field of optics and photonics.

4 Quantum parameter estimation as a
signature of the exceptional points
of a non-Hermitian system

Quantum phase transition in non-Hermitian
systems is traditionally characterized by the energy
spectrum of the Hamiltonian. Like the non-Her-

mitian Hamiltonian of Eq. (6), the PT symmetric

N Q
part Hpr = 01" %0'3 of the Hamiltonian has two

1
eigenvalues of E,, = ii V2?2 —y? where the region
Y
of o= 1 corresponds to the unbroken phase of PT

Y
symmetry and 0 > 1 represents the PT symmetry

broken phase. The criticality occurs at an EP of
v = £ due to the interplay between the gain-loss rate
and coherent coupling.

Recently, some feasible approaches in quantum

information theory can be used to describe the
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criticality at the exceptional points of non-Her-
mitian systems, such as quantum entanglement,
quantum correlation and others. It is interesting to
study the physical relation between quantum critic-
ality and quantum parameter estimation in non-
Hermitian systems. In the experimental condition,
we can obtain the dynamics of the non-Hermitian
single ion system by using Eq. (5). And the eigen-
values of £ are h; = —y, hy = —y, hsy = —y+K and
K= \/)TQZ . The eigenvectors are given as

0 1 1
1 0 | o

=l o | = o | o= oy | e
0 0 *K/y

[ 2 & Q
o) =e™ Y cosh(Kf)— — + (7_ cosh (K1) +

K2 K2
A, (t) = e sinfcos @,

KZ

K2

spectively. The initial state as a function of estim-

ated parameters can be expressed as,

,(f .00
cos (5) sin—cos>e
p(0) = , (&)
.0 , (0
sin—cos—e” sin (—)
2 2 2
0 .0
where  p(0) = [6(0)) (9(O)]. $(0)) = cos 5 le) + sin 5
€“|g). The estimated parameters of 6,¢ are related
to the directly measured density matrix elements.
The equivalent form of the initial state vector is
written as (0) = (1,sinfcos g, sinfsing,cos )T~ At
any time, the density matrix p(f) can be described
by the state vector j(z) in the form of
Q
%)sin@sinqﬁ—%sinh(Kt)cos@},

2

BYe Q (@ Q
L) =e Z{—Z cosh (K1) — 2—2 + (— cosh (K1) + %) sinsing — - sinh (K)cos e],

[ Q
L= —% sinh (Kt) — x sinh (Kt) sinfsin ¢ + cosh (Kt) cos 9] . 7

Without loss of generality, we consider the es-
timation precision of the phase parameter ¢ =
A

arctan (/l_) which is bounded by the QFI,

1
]2 = 3.2 =)
Fy=|0,8) + (B-0,B7/(1-1BP) . (®

here the vector is given by B = /li( A1, 4,,4;)" which
0

is dependent on the normalized density matrix
Py =pys/Tr(p,) with the estimated phase parame-
ter.

To demonstrate the connection between QFI
and quantum phase transition at EP, we explore the
dynamics of QFI as a function of the ratio y/€,
which is shown in Fig. 2(a) (color online). It is seen
that the values of QFI approach to the maximum
near the EP of y = Q at the early stage of the evolu-
tion. This result proves that the non-classical effects
are amplified in the vicinity of the EP. In the un-
broken region of PT symmetry, the oscillatory beha-
vior of QFI can occur in Fig. 2(b). In fact, a non-
Hermitian system can be referred to as one open
system. The discontinuous revival behavior can

arise from the non-Markovian dynamics which is

characterized as information retrieval from the en-
vironment to the system. However, the QFI under-
goes the monotonically decreasing evolution in the
broken phase as shown in Fig. 2(c). The unidirec-
tional information flow from the system to the en-
vironment leads to the monotonic decaying of QFI.
Therefore, the EP masks the oscillation and mono-
tonic declination of quantum Fisher information.
The two different ways of the evolution of QFI can
be regarded as a signature of quantum phase trans-
ition. Moreover, the more accurate estimation can be
obtained in the unbroken phase of PT symmetry.

To furthermore study the effects of the bal-
anced gain and loss on estimation precisions, we
also illustrate the short-time behavior of QFI with
respect to all possible values of the phase parameter.
From Fig. 3 (color online), the contour plot of QFI

. Y . . o
as a function of I3} and ¢ is shown in the condition

of Q=2nx32 kHz, 6 ==n/2, t =19 us. We can ob-

serve the values of QFI arrive at some peaks in the
L Y .
vicinity of the EP of (5 =1 . It is demonstrated that

for some certain values of ¢ = nn(n=0,1,2---), the

maximal values of the QFI are obtained at the ex-
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ceptional point. This result suggests that near the
EP, there is an enhanced availability of quantum es-

5x10°°

4x107

3x10°°

t/s

2x10°°

1x10°°

(b)

log,((F)

11075 2x107° 3x107° 4x107° 5x107
t/s

Q=

timation precision. The QFI is sensitive to quantum
criticality at the EP.

log,(F)
9.450

7.008
4.567
2.125
-0.3167
—2.758

—5.200

(©

log,(F, ¢)

1107 2x107° 3x107° 4x10°  5x107°
t/s

Fig.2 The dynamics of QFI is plotted as a function of the ratio y/2 in the condition of Q =2xx32kHz,0=n/2,¢ =0. (a) The

contour plot; (b) the oscillation illustrated in the PT symmetry unbroken region of &5 = 0.43; (c) the decaying behavior

in the broken phase of é =15

10g10(F¢)
18.60
16.98
15.36
13.74
12.12
10.50
8.880
7.260
5.640
4.020
2.400
0.780 0
—0.840 0
—2.460
—4.080
=5.700

Fig. 3 The contour plot of QFI is illustrated at a short time

interval.

It is also demonstrated that the non-Hermitian

QFI about parameter estimation can be regarded as
one feasible witness to determine the critical points

of the system.

5 Quantum information witness of
PT phase transition

In the study of the dynamics of quantum sys-
tems, people often focus on the evolution of some
facets of quantum information including quantum
nonlocality. We expect to find more evidences to
characterize quantum phase transition in a non-Her-
mitian system, from the viewpoint of quantum in-
formation. In the following, the dynamical behavior

of quantum entropy and quantum coherence are ex-
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amined to demonstrate the effects of quantum in-
formation facets on quantum criticality at the EP.

It is known that quantum entropy can reveal the
flow and distribution of quantum information with-
in the system. The characteristics of the von Neu-
mann entropy can be obtained from the dynamics of
the non-Hermitian system. For the non-Hermitian
system, quantum entropy is defined by the normal-

ized density matrix®'?2;

S (®) = -Tr[plng] . (9

When the single ion system is considered, the

normalized density matrix is written as

LA d-id
2T T
PO=1 21 v, 1 a4 | - (10)
o 2 2

Here the initial state p(0) is chosen as the form
of Eq. (6). The dynamical behavior of quantum en-
tropy can be plotted in Fig. 4(a) (color online) when
the parameters are 2 =2nx32 kHz, 6 =7n/2,¢0 =0.

/—”f’—-/“!ﬁhhxhx

il T

Y
It is shown that in the region of <l quantum en-

tropy exhibits periodic oscillations with time. In
contrast, for the PT symmetry broken region of

Y
I3 > 1 the entropy gradually decreases and ap-

proaches to a stable value. From Fig. 4(b), we can
observe that the time derivative dS/dt suddenly
changes near the EP. The time is set as t = 66.8 ps.

The Fig. 4(b) shows the first derivative of en-

. . Y
tropy with respect to the ratio of o From the fig-

ure, we can clearly distinguish three different re-
gions. In the PTS region, the entropy has a maxim-
um value implies the presence of substantial

Y
quantum resources. If the value of 0o approaches to

the EP, the time derivative of entropy suddenly
changes to zero from negative values. The result
also demonstrates that the maximum of quantum en-
tropy can be accessed in the vicinity of the EP. It is
proven that the dynamics of quantum entropy can be
used to describe the critical phenomena of the non-

Hermitian system.

40+ (b)

20

ds/de
i

720_

740_

_60 -

Fig. 4 (a) The evolution of quantum entropy. (b) The change of dS/dr

Meanwhile, quantum coherence emerges when
quantum states exist in the form of the superposi-
tion. It serves as one kind of fundamental resources
in quantum information technology.

According to the definition of I;-norm!™®2,

quantum coherence can be calculated as C(p) =

Zlﬁi1| and determined by the off-diagonal ele-

i#]

ments of the normalized density matrix. The expres-
sion of quantum coherence for the non-Hermitian

ion system can be given by

L+

(1
ol

Ch=

The dynamical behavior of quantum coherence

. Y -
as a function of o can be shown in Fig. 5 (color on-
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line) when the parameters are £ =2nx32 kHz,
0=mn/2,6=0.

Fig. 5 The evolution of quantum coherence

It is seen that the high values of coherence oc-
cur in an oscillatory manner in the PT symmetry un-
broken region. With the increase of the loss 7,
quantum coherence decreases monotonically in the
PT symmetry broken region. The EP marks the two
different kinds of behavior from the viewpoint of

quantum coherence.

6 Conclusion

Utilizing quantum metrology techniques, we
provide a witness of quantum Fisher information to

characterize the phase transition of a non-Hermitian
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