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Abstract: In the field of image processing, the analysis of Synthetic Aperture Radar (SAR) imagery is crucial due to its broad range
of applications. However, SAR images are often affected by coherent speckle noise, which severely degrades image quality.
Traditional denoising methods, typically based on filter-based techniques, often face challenges in terms of inefficiency and limited
adaptability. To address these limitations, this study proposes a novel SAR image denoising algorithm based on an enhanced residual
network architecture, aimed at improving the utility of SAR imagery in complex electromagnetic environments. The proposed
algorithm integrates residual network modules, which directly process the noisy input images to generate denoised outputs. This
approach not only reduces computational complexity but also mitigates the difficulties associated with model training. By combining
the Transformer module with the residual block, the algorithm enhances the network's ability to extract global features, offering
superior feature extraction capabilities compared to CNN-based residual modules. Furthermore, the algorithm incorporates the
adaptive activation function Meta-ACON, which dynamically adjusts the activation patterns of neurons, thus improving the network's
feature extraction efficiency. The effectiveness of the proposed denoising method was empirically validated using real SAR images
from the RSOD dataset. The algorithm demonstrated exceptional performance in terms of EPI, SSIM, and ENL, while significantly
improving PSNR. Compared to both traditional and deep learning-based algorithms, the PSNR performance was enhanced by over
twofold. Furthermore, evaluation on the MSTAR SAR dataset demonstrated a PSNR of 25.2021, thereby substantiating the
algorithm's robustness and applicability in SAR denoising tasks. These results indicate that the proposed algorithm effectively reduces

speckle noise while preserving critical features in SAR imagery, thereby enhancing its quality and usability in practical scenarios.
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including target detection, image reconstruction, and

1 Introduction . . .
denoising, numerous technical challenges persist.

Synthetic Aperture Radar (SAR), as a form of Firstly, effectively extracting discriminative features

from high-dimensional SAR data, particularly in
scenarios with limited data, remains an unresolved

microwave radar, is distinguished by its ability to

provide high-resolution imaging. Unlike conventional  ~ . .
issue. In recent years, deep learning-based multimodal

radar systems, which are constrained by the fixed
approaches have gradually become a research focus [81.

aperture size, SAR utilizes a synthetic aperture — :
[1-3] These approaches primarily enhance target detection

mechanism to enhance imaging resolution : . ) ) :
and classification accuracy by integrating different

However, SAR images are often affected by coherent )
types of remote sensing data. Furthermore,

speckle noise, a form of artifact generated by the
cross-modal data fusion has demonstrated high

coherent nature of the imaging process [*l. This noise ) :
accuracy in tasks such as target detection,

manifests as granular patterns within the image, . : ]
classification, and change detection. However, due to

reducing the signal-to-noise ratio (SNR) and
the distinct physical properties of different types of

remote  sensing data, effectively performing
cross-modal data fusion while maintaining the model's
generalization capability remains a significant
noise is crucial to improving SAR image processing e e R e ) o s o ML )

[6.7] learning-based cross-modal image fusion method,
which achieves efficient integration of data from

degrading image quality Bl. Such degradation presents
significant challenges for subsequent analysis and

interpretation tasks. Therefore, the development of

effective algorithms for reducing coherent speckle

In critical tasks of SAR image processing,
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multiple sensors through the joint training of several

network models, significantly enhancing the model's
applicability and stability across various scenarios [°.

In real-time monitoring and emergency response, the

rapid processing of large-scale SAR data while

maintaining high processing accuracy remains an
urgent challenge. Zhao et al. proposed a solution based

on lightweight convolutional neural networks (CNNs),

which, by incorporating pruning and gquantization

techniques,  significantly reduce computational
complexity while ensuring high denoising and

detection performance 1%,
Coherent speckle noise, in contrast to other types

of noise, typically leads to intense local fluctuations

and dramatic changes in signal phase and amplitude,
making it distinct from other forms of noise. Although

the impact of speckle noise is relatively minimal in
low-reflectivity regions, it significantly distorts the

details in high-reflectivity areas. This necessitates

denoising methods that account for both the spatial

variability of the noise and the local features of the

image.
Traditional denoising methods often struggle to

achieve an optimal balance between noise removal
and detail preservation. In recent years, deep learning
methods, such as CNNs and generative adversarial
GANs
advancements in SAR image denoising tasks. For

networks have made significant

example, Zhu et al. proposed a deep convolutional

neural network-based denoising algorithm _ that

effectively removes speckle noise while preserving

image details "1, Liu et al. employed multi-scale
convolutional networks and  multi-view  fusion

strategies to more effectively address the diversity and

complexity of SAR images 2. Additionally, Li et al.

introduced a denoising strategy that combines adaptive

filtering with deep learning methods, which
dynamically adjusts denoising strength based on the

local characteristics of the image, achieving favorable

denoising results [13].

In this paper, we propose a deep learning-based
SAR image denoising algorithm, which incorporates
residual units. Given the distinct nature of coherent
speckle noise—both in terms of its origin and

distribution—our proposed denoising method is

specifically designed to target this type of noise, with
the goal of enhancing the quality of SAR images. The
main contributions of this work are as follows:

(1) A residual network module is introduced,
augmented with a Transformer architecture, to
generate new residual blocks. This modification
improves the algorithm's ability to extract global

features from SAR images, thereby preserving
essential global information.
(2) We incorporate an adaptive activation

function, Meta-ACON, into the DnCNN network. By
training the switching factors in the custom-designed
CNN network, Meta-ACON adaptively eliminates
irrelevant features, thus enhancing feature extraction
efficiency.

(3) The proposed SAR image denoising
algorithm, DnCNN-RM, is evaluated on the MSTAR
SAR image dataset to validate its generalization
ability. The results demonstrate the effectiveness and
practicality of the algorithm, as well as the feasibility

of simulating coherent speckle noise.

2 Method

2.1 Residual Network Mechanism

The structure of the residual block in the Deep
Residual Network (DRN) is illustrated in Fig. 1. Let
the initial input features be denoted by x, and the
desired output of the DRN by H(x). In this context, the
learning objective can be reformulated as learning a
residual mapping, where the network is tasked with
learning only the difference between the input and
output, rather than the entire transformation. As the
residual approaches zero, the output of the network
approximates the input x, making the residual function
equivalent to the identity mapping. As a result, the
original function H(x) is transformed, with the identity
mapping of x effectively being passed through to the

output.

h 4
weight layer

Fro Y :( Hx)=F()+x )

Y

Fig. 1 Residual unit module structure diagram
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2.2 Transformer
The Transformer model, introduced by Vaswani
et al., has revolutionized the field of natural language

processing (NLP) and extended its impact to other

domains such as computer vision and speech
processing. Unlike traditional recurrent neural
networks (RNNs) and CNNs, the Transformer

leverages a self-attention mechanism to process input
sequences in parallel, rather than sequentially. This
parallelization significantly improves both training
efficiency and model scalability, especially in tasks
requiring long-range dependencies.

At the core of the Transformer architecture is the
self-attention mechanism, which allows the model to
weigh the importance of each element in the input
sequence relative to others, irrespective of their
distance in the sequence. The Transformer employs
multi-head attention, enabling the model to attend to
of the

semantic

different parts sequence simultaneously,

capturing  various relationships. The
encoder-decoder structure, with layers of attention and
feed-forward networks, allows the model to encode
complex patterns and generate meaningful output

representations.

2.3 Meta-ACON

ACON is designed to adaptively activate neurons
(14, The switching factor, denoted as™ f3, serves as a

hyperparameter that governs the activation of neurons.
When g approaches 0, ACON . displays

nonlinearity, leading to ‘smaller weights for the

reduced

corresponding neuron. ‘As a result, neural networks
can efficiently extract features, minimizing the

extraction of redundant and irrelevant information.

ACON employs S (7, (x),7,(x)) to approximate

the activation function, where 7,(x) and 7,(x)

represent linear functions. Consequently, the formula
for ACON as shown in Equation (1).
Ficon ()= 8,01, (x) n
=(17,(x) =11,(x))- o1 B(1,(x) =17, (X)]+ 77, (x)
where o represents the Sigmoid function. In this
paper, ACON-C

activation function, which adaptively controls neuron

is employed as the improved

weights using the same binary function. Let

n,(x)=px, n,(x)=p,x(p, # p,), mathematically,

then the computation formula for ACON-C is
provided in Equation (2) as follows:
Sacon-c(x) = Sﬂ (px, pyx) )
=(py = py)x-olB(p, = p,)x]+ pox
Meta-ACON employs a pre-designed neural
network to determine the value of £, as depicted in
Fig. 2.
nonlinearity of Meta-ACON, using p, =1.5, p,=-05

In order to demonstrate the dynamic
as an example, the Meta-ACON-C activation function

is constructed. As the value of g changes,
Meta-ACON-C  dynamically

non-linear and linear modes, as illustrated in Fig. 3.

transitions between

When g >0, f, o (x)—>max(px,p,x)=1.5x; when

B 205 [ acovc(X) —>mean(px, p,x)=0.5x -

Neural Network

T — | |
|

i
( Input )—n: (CONV+BN ) - Output )

Fig. 2 Schematic diagram of Meta-ACON in

non-linear and linear switching

f’ldﬂn ACON-C (x)

Fig. 3 Structure of the neural network for learning
the switching factor

2.4 DnCNN-RM

This chapter is dedicated to the task of restoring a
clean, noise-free image Xx from noisy observations
y=x+v. Generally, v present in the images is
modeled as additive white Gaussian noise (AWGN)

with a standard deviation denoted by o . In
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(' Inputnoisy image features }—

Output noise image
characteristics

3 x 3 Conv_Meta

A4
3 x 3 Conv_Base » 3 x 3 Conv_Meta

Fig. 4 DnCNN-RM network structure diagram

contrast to traditional denoising algorithms that rely
on learning image priors to distinguish noise,
DnCNN utilizes a neural network to effectively
separate noise from the original image. The
proposed DnCNN-RM framework is built upon
DnCNN as the baseline, and its architecture is
illustrated in Figure 4. This framework consists of
19 convolutional layers, each with unique parameter
settings and structural configurations. In addition to
incorporating a Transformer in the ResNet block,
the kernel size for all subsequent layers is fixed.
The stride for each layer is set to 1, and edge zero
padding with a padding value of 0 is applied to the
feature maps. These parameter configurations
ensure that the intermediate layers of the network
maintain consistent input and output dimensions.
Furthermore, the use of edge zero padding helps
prevent the introduction of boundary artifacts and
the generation of redundant information, thereby
preserving the quality of the image. To enhance
feature extraction, this study employs the adaptive
activation  function © Meta-ACON  in the
convolutional layers over 15 cycles, which
improves the network's ability to capture critical
features.

The input to DnCNN-RM consists of noisy
image features denoted as y =x+v. DnCNN-RM
takes a different approach by training residual
mappings (denoted as R(y)=~v ). After training, the
model outputs residual mappings that approximate
the noise, and subsequently recovers clean,
noise-free image features (denoted as x=y—R(y))
by subtracting the residual mappings from the
original features. Formally, DnCNN-RM calculates
the average mean square error (MSE) between the
residual image and the noisy input, as shown in

| 3x3Conv Base| = | 3x3 Conv|+ | BN | +| ReLU |
| 3x 3 Conv_Meta| = | 3x3Conv|+ | BN | +| Meta-ACON |
15 cycles
Equation (3):
1 N
O =5 DI RG0 -0 =) ®
=

where DnCNN-RM learns the training
parameters € by continuously iteratively updating
the loss function &(6), {(»,.x)}Y, denoting the
group of noisy clean training image pairs.

To maintain consistent input and output sizes
and facilitate noise filtering through subtraction
operations, the DnCNN-RM model avoids the use
of pooling layers, relying instead on convolutional
layers, batch normalization (BN) Ilayers, and
nonlinear activation layers. Specifically, the model
includes the following four types of network layers:

(1) Transformer-Based Residual Block: In
the residual block, we replace the convolutional
neural network with a Transformer, which is more
effective at extracting global information, to
perform initial and comprehensive feature
extraction. The Transformer module primarily
consists of an encoder and a decoder, which work
collaboratively to process global data.

(2) Conv+Meta-ACON: The layer employs a
convolutional kernel of size 4 to generate feature
maps, followed by the Meta-ACON activation
function. This function enhances the network's
ability to extract meaningful features by selectively
activating neurons with useful information, while
preserving the network's nonlinearity.

(3) Conv: In this layer, only convolutional
kernels are used to generate the final output feature
maps.

By integrating batch normalization,
DnCNN-RM optimizes the network architecture,
accelerating training and improving denoising
performance. The model combines convolution with



6 Chinese Optics

Ci

the Meta-ACON activation function, allowing it
to effectively separate clean images from noisy
observations through hidden layers, extracting pure
directly. DnCNN-RM trains the

network in an end-to-end manner and introduces a

noise features

Transformer-Based residual mechanism module that
learns to map noisy input images to their noise
components, ultimately producing clean, noise-free

images.

3 Experiments

3.1 Datasets

This paper experimentally validates the denoising
performance of the DnCNN-RM algorithm using a
dataset composed of real SAR images. These SAR
images serve to evaluate the denoising effectiveness of
the DnCNN-RM algorithm on real-world data,
allowing for subsequent calculation of evaluation
metrics and comparisons with other denoising
algorithms. For model training, the Train400 and
RSOD datasets are employed. The Train400 dataset
comprises 400 clean, noise-free grayscale images,
while the RSOD dataset includes 976 annotated
images, all acquired through infrared sensors. After
acquiring the images via infrared sensors, a deblurring
process is applied to achieve an image resolution of
0.08 m, leading to the generation of the Vaihingen
dataset. The infrared sensor system primarily consists
of an array of infrared detectors and signal processing
readout circuits._We use 'the general SAR dataset
MSTAR to test the generalization ability of the

proposed algorithm, demonstrating its practicality and

high performance in the field of SAR denoising.
Due to the unique nature of coherent speckle

noise, it is impossible to obtain a noise-free SAR
image. Therefore, we simulate coherent speckle noise
by using additive Gaussian noise. The noisy image is
generated by adding the Gaussian noise to a clean
image, and this noisy image is paired with the clean
image to form a training dataset for training the
network.
Before training, a preprocessing step is
performed to introduce multiplicative noise to the

clean images. Since the Train400 dataset consists of

noise-free images that cannot directly simulate SAR
data, multiplicative noise with a mean of 0 and a
variance of 2 is randomly added to the original images.
This noise closely mimics the coherent speckle noise
typically observed in SAR images.

3.2 Experimental results and analysis

To verify the superiority and effectiveness of the
DnCNN-RM algorithm, Fig. 5 and Fig. 6 present
representative denoising results of various methods by
using real SAR images (SARI and SAR2). Two sets
of pictures are used to test the denoising performance
of the algorithm for real SAR images. In this chapter,
algorithm, SAR-BM3D
algorithm and DnCNN algorithm as the base model

Lee's algorithm, Frost's
are used as comparison algorithms with DnCNN-RM
algorithm to prove the excellent denoising effect of
DnCNN-RM. During the training of DnCNN and
DnCNN-RM, the learning rate is set to 0.001, the
batch size is 128, and the number of iterations is set to
20.

Fig. 5 and Fig. 6 present the denoised image
results of the five denoising algorithms for the real
SAR images SARI and SAR2, respectively. The
sub-images are described in detail, where Fig. (a) are
all real SAR images, and Fig. (a) is input to each
model as the input image to obtain the subsequent
output results; Fig. (b) is the result graph using Lee's
algorithm; Fig. (c¢) is the result graph of output
denoising using Frost's algorithm; Fig. (d) is the result
graph of denoising by SAR-BM3D algorithm; Fig. (e)
shows the result graph after denoising by original
model DnCNN algorithm. Fig. (f) is the result graph
of output denoising using DnCNN-RM.

Table 1 and Table 2 present the denoising
outcomes of six different algorithms applied to SAR1
and SAR2 images, alongside the corresponding
evaluation indices of the original images. Given that
synthetic aperture radar (SAR) inherently carries
coherent speckle noise, achieving a completely
noise-free and distortion-free SAR image is not
feasible. To address this inherent limitation, this study
incorporates the Equivalent Number of Looks (ENL)
as an additional evaluation metric to more effectively

assess the denoising performance of each algorithm.
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Fig. 5 The denoising results of SAR1 by different
denoising algorithms

The results of the objective evaluation indices,
shown in Table 1 and Table 2, highlight the
comparative performance of the six denoising
algorithms on the SAR1 and SAR2 images. For the

SAR1 image, while maintaining excellent
performance in EPI, SSIM, and ENL metrics, the
PSNR reached a maximum of 59.011,

demonstrating the superiority of the denoising
process. For the SAR2 image, the PSNR improved
nearly twofold compared to traditional algorithms,

reaching 39.78. The experimental findings
demonstrate that the DnCNN-RM algorithm
achieves  significantly  superior ~denoising

performance on real SAR images compared to

traditional denoising methods.

Fig. 6 The denoising results of SAR2 by different
denoising algorithms

Based on the experimental results, it can be
concluded that the DnCNN-RM algorithm exhibits
the most effective denoising performance on SAR
images. This algorithm not only addresses the
limitations of traditional denoising methods, which
often rely heavily on filter design, but also enhances
the denoising process by training specialized
networks tailored to different noise types.

We conducted an ablation study on the
DnCNN-RM model using the MSTAR dataset,
comparing the denoising performance of several
variants: DnCNN (Baseline), DnCNN + ResNet
Block (CNN), DnCNN + ResNet Block
(Transformer), and DnCNN + Meta-ACON. The
experimental results are shown in Table 3.

Table 1. Denoising results of SAR1 by different SAR image denoising algorithms

Method Mean Std PNSR EPI SSIM ENL
Lee 118.44 13.73 14.74 0.987 0.996 0.999
Frost 115.32 10.74 12.49 0.833 0.979 0.999
SAR-BM3D 292.84 17.11 51.74 0.992 0.992 0.999
DnCNN 607.76 25.38 22.56 1.000 0.988 0.999
DnCNN-RM 697.12 25.22 59.011 1.000 0.999 0.999
Table 2. Denoising results of SAR2 by different SAR image denoising algorithms

Method Mean Std PNSR EPI SSIM ENL
Lee 556.73 23.38 18.38 0.989 0.995 0.999
Frost 409.82 20.24 24.55 0.735 0.978 0.999
SAR-BM3D 595.95 24.41 21.45 1.000 0.997 0.999
DnCNN 1180.49 34.36 23.40 1.000 0.987 0.999
DnCNN-RM 1150.26 35.65 39.78 0.999 0.999 0.999
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Table 3. Denoising results of various denoising algorithms in ablation study

Method PSNR

DnCNN 15.5135
DnCNN+ ResNet Block (CNN) 24.5698
DnCNN + ResNet Block (Transformer) 24.8080
DnCNN + Meta-ACON 24.5833

DnCNN+ ResNet Block (CNN) + Meta-ACON 24.5888
DnCNN + ResNet Block (Transformer) + Meta-ACON 25.2021

Table 4. Comparison results of SAR image denoising with different algorithms

Method Wang et al. [14] Zhang et al. [13] Wang [16] Ours
PSNR 22.7 22.44 22.90 25.201
SSIM 0.709 0.900 0.909 0.951
The experiments demonstrate that the maintain higher image quality at higher noise levels,

Transformer-based residual block outperforms the
CNN-based residual block in terms of global feature
extraction capability, leading to improved removal
of coherent speckle noise in SAR images. Both the
Transformer-based ResNet Block (24.8080) and
Meta-ACON  (24.5833)
performance boost

provide a positive
the DnCNN model.
Additionally, the strong compatibility between these
two modules enables the final DnCNN-RM model
(25.2021) to achieve the best overall performance.
The proposed DNCNN-RM algorithm was
evaluated through comparative experiments ~with

to

other commonly used SAR image denoising

methods 4 15, 16] ynder the same ‘experimental
conditions. The MSTAR dataset was employed for

the evaluation, and the detailed results are presented

in Table 4. The experimental results demonstrate
that DNCNN-RM outperforms all the compared

algorithms. Specifically, DNCNN-RM significantly
surpasses the other methods in both PSNR and

SSIM metrics, indicating its superior performance

in _denoising and preserving image details.
Compared to other methods, DNCNN-RM is able to
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