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Abstract: For space-borne gravitational wave detection missions based on 

heterodyne interferometry principle, tilt-to-length (TTL) coupling noise is an 

important optical noise source, exerting significant influence on the accuracy 

of the measurement system. This paper presents a method for analyzing TTL 

coupling noise under the joint influence of multiple factors. An equivalent 

simulated optical bench for the test mass interferometer is designed here, and 

the Gaussian beam tracing is adopted to simulate beam propagation. By 

simulating the interference signal, it is capable of analyzing the impact of 

various factors on the TTL coupling noise, including positional, beam 

parameters, detector parameters, and signal definition factors. On this basis, a 

random parameter space composed of multiple influential factors is 

constructed within a range satisfying the analysis requirement, and the 

corresponding simulation results from randomly sampling are evaluated via 
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variance-based global sensitivity analysis. The calculated results of the main 

effect index and the total effect index show that the test mass rotation angle 

and the piston effect -lateral have significant influence on the TTL coupling 

noise in the test mass interferometer. The analysis provides qualitative 

reference for the design and optimization of space-borne  laser interferometry 

system.

Key words: space interferometry; optical simulation; tilt-to-length 

coupling
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摘 要：在基于外差干涉原理的空间引力波探测任务中，抖动光程耦合噪声是一个重要的光学噪

声源，对测量系统的精度产生显著影响。本文提出了一种分析多种因素共同作用下抖动光程耦合

噪声的方法。首先设计了一个等效的测试质量干涉仪仿真光学平台，并采用高斯光束追踪模拟光

束传播。通过模拟干涉信号，可以分析各种因素对抖动光程耦合噪声的影响，包括位置因素、光

束参数因素、探测器参数因素和信号定义因素。在此基础上，在满足分析要求的参数范围内,构

建了由多个影响因素组成的随机参数空间，并通过基于方差的全局敏感性分析对随机采样得到的

模拟结果进行评估。主要效应指数和总效应指数的计算结果表明，测试质量的旋转角度和活塞效

应（径向）对测试质量干涉仪中的抖动光程耦合噪声有显著影响。这一结论为空间激光干涉测量

系统的设计和优化提供了定性参考。

关键词：空间干涉测量；光学仿真；抖动光程耦合噪声

中图分类号：TP394.1；TH691.9          文献标识码：A

in 
pre

ss



中国光学
Chinese Optics 

3

1. Introduction

The detection of gravitational waves in space has gained significant 

international attention, driven by its ability to identify a wide range of 

detectable wave source frequencies and diverse types of wave sources. Several 

representative missions, such as Laser Interferometer Space Antenna (LISA) 

[1], Taiji [2], and Tianqin [3], are expected to launch in the next decade and 

achieve remarkable detection sensitivities. In those space-based gravitational 

wave detection missions, split heterodyne interferometry [4] is adopted, 

enabling the measurement of distance variations caused by gravitational waves 

between two test masses separated by millions of kilometers. The so-called 

science interferometers are utilized for measuring distance variations between 

satellites, while test mass interferometers are employed for measuring distance 

variations between the optical bench with respect to the test mass [4]. Notably, 

both types of interferometers are susceptible to a specific type of optical noise 

known as tilt-to-length (TTL) coupling noise, which arises due to beam tilt 

during measurement. The beam jitter received by the telescope in the science 

interferometer, and the rotation of the test mass the test mass interferometer, 

can lead to TTL coupling noise, for instance [5, 6]. Presently, it stands as the 

second most significant entry in the metrology error budget of LISA-like 

missions, following shot noise [7], hence, comprehending the characteristics 

of this noise fully is of paramount importance for effectively recognizing, 

suppressing, and subtracting the noise as needed. 

Presently, researchers are directing their attention to two primary areas in 

investigating TTL coupling noise. The first aspect involves analyzing the 

factors that contribute to the noise, employing theoretical analysis or 

numerical simulation methods. Theoretical analysis of TTL coupling noise 

involves deriving analytical expressions of path length signals under various 

influential factors. Previous studies have provided qualitative and quantitative 
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explanations of both geometric [8, 9] and non-geometric mechanisms [10] of 

TTL coupling. Some research focused on specific conditions related to the 

cancellation of TTL and found that geometric optics alone is insufficient to 

describe the characteristics of TTL coupling noise accurately [8, 9]. Further 

studies explored the impacts of beam parameters [10, 11], signal definition [12] 

and wavefront aberrations [13-16] on TTL coupling noise. Requirements for 

telescope wavefront aberration [13-15] and the effect of low-order aberrations 

were also analyzed [16]. The second aspect entails exploring strategies to 

suppress the TTL coupling noise through optical design or data processing 

techniques for noise subtraction. Imaging systems have been effectively 

utilized for suppressing TTL coupling noise. Studies have demonstrated 

significant noise suppression using dual-lens or four-lens imaging systems can 

successfully suppress TTL coupling noise [6,7,17]. Additionally, simulations 

have provided insights into subtracting TTL coupling noise through linear 

regression methods and Bayesian inference [18-21].

The above research mainly focused on the derivation of analytical 

expressions for analyzing TTL coupling noise induced by individual factors, 

the development of imaging systems aimed at noise suppression, and the 

utilization of data processing techniques for noise extraction. The innovative 

contribution of this paper lies in its introduction of a methodology capable of 

analyzing multiple influential factors and discerning their individual impact by 

assigning a ranking. As a demonstration, we implement this methodology to 

the test mass interferometer of LISA-like mission. 

Following this introduction, Section 2 introduces the definition of TTL 

coupling. In Section 3, the configuration for simulating TTL coupling is 

presented, and then the simulated results are compared with data obtained 

from an experiment. Subsequently, Section 4 presents the methodology for 

analyzing multiple influential factors. Based upon this, Section 5 delves into 
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the analysis that incorporates multiple factors using the simulation results. 

Finally, Section 6 summarizes the primary contributions of this paper and 

outlines future work.

2. The definition of TTL coupling

The fundamental nature of TTL coupling is the additional pathlength readout 

signal generated in the interferometer due to the jitter of the beam. Under the 

assumption of geometrical optics, where both interfering beams are considered 

as geometric rays, the noise can be defined by the optical path length 

difference (OPD) value. However, in actual interferometers, the interfering 

beams are not simple geometric rays. This implies that non-geometric effects 

cannot be disregarded. In such instances, any additional changes in path length 

will be detected by the detector of the interferometer using the longitudinal 

path length signal (LPS). In space-based gravitational wave detection missions, 

the quadrant photodiodes (QPD) are used as detectors, which have different 

combinations of signals from its four segments, resulting in various definitions 

for the LPS. Notably, the LPF (LISA pathfinder) and AP (averaged phase) 

definitions are widely employed [8]:

                                          DCBALPF
1LPS CCCC
k

                               (1)

            )arg()arg()arg()arg(
4
1LPS DCBAAP CCCC
k

                             (2)

where k represents the wavenumber (2π/λ), λ denotes the wavelength of the 

beam, meanwhile, the variables CA, CB, CC, and CD refer to the complex 

electric field on each quadrant of the QPD. 

3. Simulation Method and Verification

To analyze TTL coupling noise, numerical simulations are implemented 

first and subsequently applied to the test mass interferometer. The results are 
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then validated through an experiment. This section primarily concentrates on 

the simulation of TTL coupling noise within the test mass interferometer. It is 

divided into two subsections. The first subsection outlines the simulation 

configuration utilized in this paper to simulate TTL coupling noise. The 

second subsection presents the comparison between the simulation results and 

experimental data, demonstrating the accuracy of the simulation.

3.1 Simulation Method

The software employed in this study for simulation purposes is one that we 

developed in [22], which addresses both geometric and non-geometric TTL 

coupling. For the simulation of the test mass interferometer, both the reference 

and measurement beams are treated as fundamental Gaussian beams. Their 

propagation can be easily described using the q-parameter and ray transfer 

matrix, which facilitates the computation of the complex electric field detected 

by the QPD, allowing for the determination of the LPS, i.e. Eq.(1) and Eq.(2).  

Based on the concept of split heterodyne interferometry and the 

simulation software we developed, an equivalent simulated optical bench for 

the test mass interferometer has been designed, taking into account the motion 

of the freely suspended test mass, schematicly shown in Fig. 1. The beam 

from the laser is split into two beams by a beam splitter (BS). One beam 

serves as the reference beam, which is transmitted to the mirror (M) for 

reflection, while the other beam is directed towards the test mass and reflected 

off its surface. The reference beam and the measurement beam are then 

recombined at the beam splitter (BS) and interfere at the QPD. 
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Fig. 1 Schematic diagram of the simulated optical bench for the test mass interferometer.  The 

left upper corner shows the coordinate of the optical bench,  with the detailed coordinates and 

normal vectors of every optical component are tabulated in the Table 1

Table 1 The type, position, and orientation of each component in the simulated optical bench 

used to analyze TTL coupling

Label Component Name Center coordinate
cm

Normal Vector

Laser Laser (0,0,0) (1,0,0)

BS Beamsplitter (25,0,0) (-1,0,0)

M Mirror (25,50,0) (0,-1,0)

TM Test mass (50,0,0) (1,0,0)

QPD Quadrant photodiode (25,-25,0) (0,1,0)

By employing this optical configuration, various factors affecting TTL 

coupling noise in the test mass interferometer can be simulated. The 

influential factors have been classified into four distinct categories: positional 

factors, beam parameters, detector parameters, and signal definition. 

Positional factors include beam offset, piston effect, test mass shift, and test 

mass rotation, as depicted in Fig. 2. The beam offset refers to the displacement 

between the measurement beam and the reference beam, caused by 
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misalignment. When the center of rotation of the test mass does not coincide 

with the reflection point of the beam on the test mass surface, the piston effect 

arises, which can be characterized by two parameters: the lateral parameter 

and the longitudinal parameter. In space-based gravitational wave detection, 

changes in the position and orientation of the test mass lead to TTL coupling. 

These changes are therefore considered as test mass shift and rotation angle. 

Beam parameters account for variations in beam waist and the distance from 

the waist of the measurement fundamental Gaussian beam. Regarding the 

detector parameter factor, TTL coupling noise arises because the signal cannot 

be fully detected due to the presence of slits in the QPD. This analysis focuses 

on the TTL coupling caused by QPD slits. The presence of QPD slits alters the 

definition of LPS. Unlike positional factors, beam parameters, and detector 

parameters, this type of factor affects TTL coupling not through input 

parameters but rather through how the detected signals are combined, as 

shown in Eq. (1) and Eq. (2).

(a) (b) (c)

Fig. 2 Schematic illustration of positional factors: (a) the offset between the measurement and 

reference beam (b) the piston effect (c) the test mass shift and rotation

3.2 Simulation verification through an experiment

The simulation software developed and employed in this study has 

undergone verification with IfoCAD, a toolkit created by the Albert Einstein 

Institute, as discussed in [22]. To gain deeper insight into its accuracy, this 

subsection undertakes a comparative analysis between the simulation 

outcomes and experimental data.
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The schematic illustration of the experimental setup is depicted in Figure 

3. Both the measurement and reference beams, denoted by blue and red lines 

respectively, share identical beam parameters since they originate from the 

same laser. After passing through acousto-optical modulators (AOMs), their 

frequencies diverge. The reference beam is reflected by a stationary mirror 

labeled as "Ref M" in Figure 3, whereas the measurement beam is reflected by 

a fine steering mirror (FSM). The FSM is intentionally rotated to achieve the 

rotation of a test mass, where the center of rotation does not coincide with the 

beam's reflection point on the FSM surface. The detectors employed in 

this setup are four-channel phasemeters. Consequently, this experimental 

configuration results in a TTL signal arising from the piston effect when the 

FSM rotates.

Fig.3 The schematic of the experimental setup, components included: acousto-optical 

modulator (AOM), polarizing beam splitter (PBS), half wave plate (λ/2), quarter wave plate 

(λ/4), beam splitter (BS), stationary mirror (Ref M), fine steering mirror (FSM)

The simulation utilizes the experimental parameters to compute the LPS 

signal, adopting the same rotation angles as those used in the experiment. 

Table 2 outlines the physical parameters involved. Subsequently, the 

experimental and simulation data are graphically represented in Figure 4, and 

Table 3 provides the relative error of the LPS for various rotation angles.

Table 2 Physical parameters list

Parameter description Value
reference beam waist 0.5 mm
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distance from waist of reference 
beam

0

reference beam frequency 2.8195×108 MHz +120 MHz

measurement beam waist 0.5 mm

distance from waist of 
measurement beam

0 mm

measurement beam frequency  2.8195×108 MHz +120 MHz+1.6 
MHz

QPD radius 1 cm

QPD slit size 50 µm

Fig.4 Comparison of experimental data and simulation data

Table 3 Comparison of rotation angle (µrad) and relative error (%)

Rotation Angle (µrad) Relative Error (%)
100 3.78

200 2.84

300 3.69

400 2.24

The average relative error between the simulation results and 

experimental data has been calculated to be 3.14%. The discrepancies 

observed in TTL coupling noise between the simulated and experimental data 

can be attributed to several factors. Firstly, the simulation model may 

incorporate assumptions and simplifications that fail to fully encapsulate the 
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intricacies and non-ideal aspects of the actual system. Secondly, experimental 

conditions, such as environmental disturbances, which were not accounted for, 

may introduce measurement errors. Additionally, the precision of the system 

parameters and the accuracy of the simulation model itself can further affect 

the consistency between the two datasets.

4. Analysis method for multiple factors

In practical applications, TTL coupling noise typically arises due to the 

combined influence of multiple factors. When these factors act simultaneously, 

analyzing the LPS becomes a complex and challenging task. In such cases, 

numerical simulation offers a viable alternative approach. Through employing 

numerical simulation introduced in Section 3, it is possible to 

comprehensively analyze the effects of various factors on TTL coupling noise 

and obtain accurate estimations of the LPS. This simulation-based approach 

provides valuable insights into the behavior and characteristics of TTL 

coupling noise in real-world scenarios, enabling researchers to develop 

effective strategies for its recognition, suppression, and subtraction in practical 

applications.

The analysis method for multiple factors is built on the fundamental 

concept of employing random parameters within a defined and reasonable 

range which affect the TTL coupling. By generating a diverse set of random 

parameter combinations, the simulation captures the variability of real-world 

scenarios. Based on the simulation, the variance-based global sensitivity 

analysis method is utilized to assess the sensitivity of the TTL coupling noise 

to each parameter. The analysis calculates the main effect index S1 and the 

total effect index ST for each parameter, providing quantitative measurements 

of their influences on the TTL coupling noise. Therefore, this method enables 

the identification of the key factors that significantly impact TTL coupling 

noise when multiple factors operate simultaneously. By systematically 
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examining the main and total effect indices, researchers can prioritize the 

factors that contribute the most to TTL coupling noise and focus their efforts 

on mitigating their impact.

The main effect index S1 quantifies the extent to which an individual 

influential factor, xi contributes to the variation in the output variance of the 

system. A higher S1 value indicates a stronger influence of that particular 

factor on the TTL coupling noise. On the other hand, the total effect index ST 

assesses the collective contribution of each influential factor to the overall 

variation in the output variance. This index takes into account both the direct 

effect of the factor and its interactions with other factors. A larger ST value 

indicates a more significant combined influence of all the factors on the TTL 

coupling noise. By evaluating both S1 and ST, researchers can gain a 

comprehensive understanding of the relative importance and impact of each 

influential factor, enabling them to prioritize and address the critical factors in 

their efforts to suppress TTL coupling noise. It should be noted that S1 and ST 

serve as indicators of the relative importance of various factors affecting TTL 

coupling noise, rather than direct measures of the impact on the final design 

accuracy of the interferometer.

The calculations of S1 and ST are calculated as follows [23-24]:

 
)(

)|(
1 yV

xyEV
S ixx ii                                        (3)
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ii                                      (4)

where V represents variance, E represents mathematical expectation, and xi 

represent the i-th influential factor , with ~ indicating all influential factors 

except the i-th. y represent the corresponding LPS.

To address the challenges in directly calculating equations Eq. (3) and Eq. 

(4), commonly employed approximation methods are utilized [25-26]: 
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The step-by-step algorithm for analyzing multiple factors is as follows:

Step 1: Randomly generating a sampling matrix of size N×2n in the 

parameter space, where N is the number of sampling points and n is the 

number of parameters which influence the TTL coupling noise.

Step 2: Using the first n columns of the N×2n matrix as matrix A and the 

last n columns as matrix B. The parameter order of matrix B must be 

consistent with that of matrix A.

Step 3: Constructing a matrix ABi of size N×n, where i = 1, 2,..., n. The i-

th column of ABi is the i-th column of matrix B, and the other columns are the 

columns of matrix A except for the i-th column.

Step 4: Calculating the corresponding LPS for random parameter 

matrices A, B, and ABi.

Step 5:  Calculating the main effect index and total effect index based on 

Eq. (5) and Eq. (6).

5. Results and analysis

In this section, the method introduced in Section 4, is employed to analyze the 

characteristics of TTL coupling noise when multiple factors act 

simultaneously. The simulated optical setup presented in this section is 

illustrated in Fig. 1.

The first step is to generate a sampling matrix containing parameters 

influencing TTL coupling. For convenience, Table 4 presents the parameter 

space, detailing the range of each parameter, which satisfies the requirements 

of Taiji.
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Table 4 Parameter space for multiple factor analysis

Factors Parameter Range
beam offset (0 μm, 100 μm)

piston effect -lateral (0 mm, 1 mm)

piston effect -longitudinal (0 mm, 1 mm)

test mass lateral shift (0 μm, 100 μm)
Positional

test mass longitudinal shift (0 μm, 100 μm)

rotation angle (0 μrad, 100 μrad)

Measurement beam waist (0.5mm, 1 mm)

Beam parameter the distance from the waist of the 
measurement beam (0 mm, 50 mm)

Detector parameter QPD slit (0 μm, 100 μm)

For 10,000 simulations, parameters were randomly chosen from the 

parameter space with a uniform distribution, the corresponding LPS are 

computed using both LPF and AP definitions, and their respective histograms 

are illustrated in Fig. 5.

Fig. 5 Histograms of LPS with LPF and AP definition in 10000 simulations

Based on the simulation results, the LPS using the AP definition spans a 

range from -9.1285×105 pm to 7.6925×105 pm, while the range is -7.9348×105 

pm to 9.6939×105pm with the LPF definition. Fig. 3. also indicates that the 

highest range of LPS signal with the LPF definition is from -1×105 pm to 0 pm 
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(1033 occurrences), whereas for the AP definition, this range is from 0 to 

1×105 pm (1088 occurrences). Within the 10000 simulations, the maximum 

absolute value and minimum absolute value for both signal definitions are 

detailed in Table 5.

Table 5 Maximum (absolute value) and minimum (absolute value) of the LPS with both LPF 

and AP in 10000 simulations.

Signal definition Maximum Minimum 
LPF 9.6939×105 pm 6.4400 pm

AP 9.1285×105 pm 14.7801 pm

From Table 4, it is evident that the minimum absolute value of LPS is 

approximately 10 pm under both signal definitions. However, it should be 

noted that while setting parameter values may theoretically result in minimal 

noise, the practical feasibility of achieving such conditions remains uncertain.

Subsequently, the simulation data can be utilized to compute the main 

effect index S1 and the total effect index ST for both signal definitions. The 

results are presented in Table 5 and Table 6, respectively, and are also 

depicted visually in Figure 6 and Figure 7 to provide a clear and intuitive 

representation.

Table 6 Main effect index S1 and total effect index ST for different parameters (LPF definition)

Factors Parameter S1 ST
beam offset 0.00037 0.00023

piston effect -lateral 0.01516 0.21815

piston effect -longitudinal 8.8911×10-7 5.3478×10-9

test mass lateral shift -0.00096 0.00217
Positional

test mass longitudinal shift -1.0968×10-7 5.9016×10-11

rotation angle 0.75350 0.99122

Measurement beam waist 0.00081 0.00240
Beam 

parameter the distance from the waist of 
the measurement beam

5.8822×10-6 3.1740×10-7

Detector 
parameter

QPD slit 0.00017 0.00028
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Table 7 Main effect index S1 and total effect index ST for different parameters (AP definition)

Factors Parameter S1 ST
beam offset 0.00093 0.00047

piston effect -lateral 0.01409 0.21586

piston effect -longitudinal 1.6607×10-6 5.29173×10-9

test mass lateral shift -0.00117 0.00214
Positional

test mass longitudinal shift -1.6703×10-7 7.6198×10-11

rotation angle 0.75988 0.99156

Measurement beam waist 0.00085 0.00039
Beam 

parameter the distance from the waist of 
the measurement beam

2.1826×10-6 5.2593×10-8

Detector 
parameter

QPD slit 0.00073 0.00035

Fig. 6 Visualization of the main effect index (S1) for LPF definitionin 
pre

ss



中国光学
Chinese Optics 

17

Fig. 7 Visualization of the total effect index (ST) for AP definition

As is mentioned before, the role of S1 is to rank the importance of input 

variables. When the LPF definition is used, the rank of S1 in descending order 

is: rotation angle, piston effect -lateral, test mass lateral shift, measurement 

beam waist radius, measurement beam offset, QPD slit, measurement beam 

waist position, piston effect -longitudinal, and test mass longitudinal shift. As 

for the AP definition, the rank of S1 in descending order is: rotation angle, 

piston effect -lateral, test mass lateral shift, measurement beam offset, 

measurement beam waist radius, QPD slit, measurement beam waist position, 

piston effect -longitudinal, and test mass longitudinal shift. It can be seen that 

there is no significant difference in the order of S1 between the two definitions.

On the other hand, ST serves to simplify the model parameters. When the 

LPF definition is applied, the value of ST in descending order is: rotation angle, 

piston effect -lateral, measurement beam waist radius, test mass lateral shift, 

QPD slit, measurement beam offset, measurement beam waist position, piston 

effect -longitudinal, and test mass longitudinal shift. For the AP definition, the 

rank of ST in descending order is: rotation angle, piston effect -lateral, test 

mass lateral shift, measurement beam waist radius, measurement beam offset, 

QPD slit, measurement beam waist position, piston effect -longitudinal, and 

test mass longitudinal shift. It can be seen that S1 and ST of LPF definition 

have slightly different rankings, but the overall trend is roughly the same, 
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while for the AP definition, the S1 and ST rankings defined by AP are exactly 

the same.

According to the analysis of S1 and ST, it can be concluded that regardless 

of which signal definition is used, the S1 and ST values of rotation angle and 

piston effect -lateral are much larger than those of other factors. Therefore, 

these two factors have the greatest impact on LPS. Additionally, the effects of 

measurement beam waist position, piston effect -longitudinal, and testing mass 

longitudinal shift on LPS are small. For further analysis, the parameter space 

was expanded by 50% and reduced by 50%, and the main effect index  S1 and 

the total effect index ST were calculated again. The conclusion remained the 

same. This means that in practice, efforts should be made to control the 

rotation of the test mass and keep its center of the test mass as close as 

possible to its geometric center to reduce piston effect.

6. Conclusion

This paper proposes a method to analyze the impacts of multiple factors on 

TTL coupling noise using random parameters. A simulated optical bench is 

constructed based on the principle of test mass interferometer, supporting the 

simulation of various noise-affecting factors, and validated with experimental 

data. The simulation and analysis cover positional factors, beam parameters, 

detector parameters, and signal definition. With parameters randomly drawn 

from reasonable ranges, 10000 simulations are carried out. Then the 

simulation data are used for the variance-based global sensitivity analysis, 

where sensitivity indices are calculated to identify the key factors impacting 

TTL coupling noise, namely, test mass rotation angle and piston effect  -lateral. 

This conclusion offers key knowledge for system design and optimization. 

The forthcoming research will primarily concentrate on the practical 

application of the proposed method to study TTL coupling noise in science 
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interferometers. Additionally, experiments will be conducted to verify the 

accuracy of the analysis results obtained through this method.
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