-
摘要:为了检测航天相机主动热控系统的功能、性能及可靠性,设计了主动热控仿真测试系统。依据传热学基本定律、航天器轨道理论和热控策略,给出了计算航天相机温度场的热网络数学模型,使主动热控系统能在模拟的空间热环境中连续工作,实现了对主动热控系统的闭环仿真测试。采用两个数字电位器相串联的方法模拟温度传感器的走势,得到的最大阻值为100 kΩ,精度达到10 Ω,符合设计中对总电阻和电阻变化率的需求,实现了对主动热控系统的功能、性能以及可靠性的仿真测试。Abstract:In order to detect the function, performance and reliability of active thermal control system of a space camera, a simulation testing system to detect the active thermal control system was designed. The thermal-net mathematical model to calculate the temperature field of camera was established based on the basic law of heat transfer, orbital theory of spacecraft and the thermal control strategy, so that the active thermal control circuit could work in a simulated thermal space environment continuously, and the closed-loop testing of the active thermal control system could be realized. A method of two digital potentiometers in series was used to simulate the trend of temperature sensors, and the largest value of resistance achieves 100 kΩ and the measuring accuracy is 10 Ω. These results show that the simulation system meets the demands for total resistance and the rate of the resistance changes in design and achieves the simulated detection of the active thermal control circuit.
点击查看大图
计量
- 文章访问数:4092
- HTML全文浏览量:447
- PDF下载量:1818
- 被引次数:0