New applications of surface plasmon polaritons
-
摘要:表面等离子体激元(SPPs)是在金属和介质界面传播的一种波动模式。本文首先叙述了SPPs的相关特性和激发方式,给出了一种基于表面等离子体激元共振(SPR)场增强原理产生相干极紫外辐射的方法,利用该方法可极大地提高光源的光子流量。分析了SPPs在生物及医疗领域的新应用,并对其在治疗癌症方面的技术原理进行了讨论。介绍了SPPs在新型光源和能源领域的发展和应用情况,综述了SPPs在太阳能电池、光子芯片以及集成电路方面的新工艺和新技术,包括最近几年来所取得的一些重要成果。最后讨论了SPPs在光存储方面的快速发展和巨大贡献。Abstract:Surface plasmon polaritons(SPPs) are the wave modes propagating at the interface between a metal and a dielectric. Firstly, the basic characteristics and the excitation modes of SPPs are introduced briefly in this paper. Then, a new method to produce coherent extreme ultraviolet radiation based on the light field enhancement of Surface Plasmon Resonance(SPR) is described, which can greatly improve the photon flux of a light source. The new application of SPPs in the fields of biology and medical treatment is analyzed, and the major technologies and principles of curing cancer are discussed. Moreover, the development and application of several kinds of new light sources and energy sources are introduced, meanwhile, the new processes and technologies of solar cells, photonic chips and integrated circuits are summarized, including some of the most improtant achievements made in recent years. Finally, the rapid development and enormous contribution of SPPs to the field of optical storage is discussed.
-
[1] RAETHER H. Surface Plasmons. Springer Tracts in Modern Physics[M]. Berlin:Springer,1988. [2] FAINMAN Y,TETZ K,ROKITISKI R,et al.. Surface plasmonic fields in nanophotonics[J].Opt. Photonics News,2006,17(7):24-29. [3] KIK P G,BRONGERSMA M L.Surface Plasmon Nanophotonics[M]. Berlin:Springer,2007. [4] SAMBLES J R,BRADBERY G W,YANG F Z. Optical-excitation of surface-plasmons:an introduction[J].Contemp. Phys.,1991,32(3):173-183. [5] ZAYATS A V,SMOLYANINOV I I. Near-field photonics:surface plasmon polaritons and localized surface plasmons[J].J. Opt. A,2003,5:S16-S50. [6] BARNES W L,DEREUX A,EBBESEN T W. Surface plasmon subwavelength optics[J].Nature,2003,424:824-830. [7] STOCKMAN M I,KLING M,KLEINEBERG U,et al.. Attosecond nanoplasmonic-field microscope[J].Nature Photonics,2007,1:539-543. [8] KIM S,JIN J,KIM Y,et al.. High harmonic generation by resonant plasmon field enhancement[J].Nature,2008,453:757-760. [9] HU W Q,LIANG E J,DING P,et al.. Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial[J].Opt. Express,2009,17(24):21843-21849. [10] LIU G L,LU Y,KIM J,et al.. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect[J].Nano Lett.,2005,5(1):119-124. [11] KNEIPP K,WANG Y,KNEIPP H,et al.. Single molecule detection using surface-enhanced Raman scattering(SERS)[J].Phys. Rev. Lett.,1997,78(9):1667-1670. [12] LIEBERG B,NYLANDER C,LUNDSTRM I. Surface plasmon resonance for gas detection and biosensing[J].Sensors and Actuators,1983,4:299-304. [13] WILSON W D. Analyzing biomolecular interactions[J].Science,2002,295(5562):2103-2105. [14] LEE J L. Better living through plasmonics[J].Science,2009,176#10:26. [15] ATWATER H A. The promise of plasmonics[J].Scientific American Magazine, 2007:56-63. [16] OZBAY E. Plasmonics:merging photonics and electronics at nanoscale dimensions[J].Science,2006,311:189-193. [17] OKAMOTO K,NIKI I,et al.. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy[J].Appl. Phys. Lett.,2005,87:071102. [18] KOLLER D M,HOHENAU A,et al.. Organic plasmon-emitting diode[J].Nature Photon,2008,2:684-687. [19] WALTERS R J,van LOON R V A,BRUNETS I,et al.. A silicon-based electrical source of surface plasmon polaritons[J].Nature Materials,2009,9:21-25 [20] ANDREW P,BARNES W L. Energy transfer across a metal film mediated by surface plasmon polaritons[J].Science,2004,306:1002-1005. [21] HEIDEL T D,MAPEL J K,CELEBI K,et al.. Surface plasmon polariton mediated energy transfer in organic photovoltaic devices[J].Appl. Phys. Lett.,2007,91:093506/1-093506/3. [22] CATCHPOLE K R,POLMAN A. Plasmonic solar cells[J].Optics Express,2008,16(26):21793-21800. [23] ATWATER H A,POLMAN A. Plasmonics for improved photovoltaic devices[J].Nature Materials,2010,9:205-213. [24] ZIA R,SCHULLER J A,CHANDRAN A,et al.. Plasmonics:the next chip-scale technology[J].Materials Today,2006,9(7-8):20-27. [25] BARNES W L,DEREUX A,EBBESEN T W. Surface plasmon subwavelength optics[J].Nature,2003,424:824-830. [26] STEFAN A M,HARRY A A. Plasmonics:localization and guiding of electromagnetic energy in metal/dielectric structures[J].J. Appl. Phys.,2005,98:011101-011110. [27] NOGINOV M A,ZHU G,BELGRAVE A M,et al.. Demonstration of a spaser-based nanolaser[J].Nature,2009,460:1110-1112. [28] HECHT B,BIELEFELDT H,NOVOTNY L,et al.. Local excitation, scattering, and interference of surface plasmons[J].Phys. Rev. Lett.,1996,77(9):1889-1892. [29] PENDRY J. Enhanced:playing tricks with light[J].Science,1999,285:1687-1688. [30] OULTON R F,SORGER V J,ZENTGRAF T,et al.. Plasmon lasers at deep subwavelength scale[J].Nature,2009,461:629-632. [31] BOZHEVOLNYI S I,VOLKOV V S,DEVAUX W,et al.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J].Nature,2006,440:508-511. [32] AKIMOV A V,MUKHERJEE A,YU C L,et al.. Generation of single optical plasmons in metallic nanowires coupled to quantum dots[J].Nature,2007,450:402-406. [33] ZIJLSTRA P,CHON J W M,GU M,et al.. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J].Nature,2009,459:410-413. [34] MANSURIPUR M,ZAKHARIAN A R,LESUFFLEUR A,et al.. Plasmonic nano-structures for optical data storage[J].Opt. Express,2009,17(16):14001-14014. [35] KIK P G,MAIER S A,ATWATER H A,et al.. Image resolution of surface plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources[J].Phys. Rev. B,2004,69(4):045418-045422.
点击查看大图
计量
- 文章访问数:8568
- HTML全文浏览量:750
- PDF下载量:8464
- 被引次数:0