Quaternion moment invariant for color image
-
摘要: 为了研究彩色图像的矩不变量特性,采用四元数进行彩色图像处理,以充分利用彩色图像的整体信息,实现彩色图像RGB并行处理。本文把传统灰度图像的矩不变量理论推广应用到四元数层面上来,定义了彩色图像的四元数矩并构造了该矩函数的仿射不变量。实验结果表明:所提出的彩色图像的四元数矩不变量的稳定性要优于L.V.Gool等人提出的彩色矩仿射不变量,其/u值提高了2个数量级。所提出的四元数仿射矩不变量可以作为模式识别中彩色目标的特征描述子来实现彩色图像目标的识别与跟踪。Abstract: In order to study moment invariants of color images, the quaternion is used to process color images and to implement the parallel processing of R, G and B components. Traditional complex moments for graylevel images are introduced to the quaternion, and the quaternion moments for describing a color image are presented. Then, the quaternion affine moment invariants are derived. Experimental results show that the stability of this method is superior to that of L.V.Gool's color affine moment invariants, and the value of /u have be improved by two orders of magnitude. The proposed quaternion moment invariants could be a useful tool in color pattern recognition and tracking.
-
Key words:
- color image /
- quaternion /
- quaternion moment /
- affine moment invariant
-
[1] HU M K. Visual pattern recognition by moment invariants[J]. IRE Trans. Inf. Theory, 1962,8(2):179-187. [2] REISS T H. The revised fundamental theorem of moment invariants[J]. IEEE Trans. PAMI,1991,13(8):830-834. [3] TIENG Q M,BOLES W W. Wavelet-based affine invariant representation:a tool for recognition planar objects in 3D space[J]. IEEE Trans. PAMI.,1997,19(8):846-857. [4] YANG ZH W,COHEN F S. Cross-weighted moments and affine invariants for image registration and matching[J]. IEEE Trans. PAMI.,1999,21(8):804-814. [5] HEIKKILÄ J. Multi-scale autoconvolution for affine invariant pattern recognition. Proceedings of the 16th International Conference on Pattern Recognition(ICPR'02),Quebec,Canada,11-15 Aug,2002:119-122. [6] PETRON M,KADYROV A. Affine invariant features from the trace transform[J]. IEEE Trans. PAMI.,2004,26(1):30-44. [7] FLUSSER J,SUK T. Affine moment invariants:a new tool for character recognition[J]. Pattern Recog. Lett.,1994,15(4):433-436. [8] MEI Y,ANDROUTSOS D. Robust affine invariant region-based shape descriptor: the ICA Zernike moment shape descriptor and the whitening Zernike moment shape descriptor[J]. IEEE Trans. Signal Proc.,2009,16(10):877-880. [9] HEIKKILA J. Pattern matching with affine moment descriptors[J]. Pattern Recogn. Lett.,2004,37(9):1825-1834. [10] SUK T,FLUSSER J. Combined blur and affine moment invariants and their use in pattern recognition[J]. Pattern Recogn. Lett.,2003,36(2):2895-2907. [11] FLUSSER J,SUK T. A moment-based approach to registration of images with affine geometric distortion[J]. IEEE Trans. Geoscience and Remote Sensing,1994,32(2):382-387. [12] LIU J,LI D,TAO W,et al. An automatic method for generating affine moment invariants[J]. Pattern Recogn. Lett.,2007,28(16):2295-2304. [13] SUK T,FLUSSER J. Graph method for generating affine moment invariants. Proceedings of the 17th International Conference on Pattern Recognition(ICPR'04),Cambridge,UK,23-26 Aug,2004:192-195. [14] WEN CH Y,ZHANG Y,ZHANG Y N. Recognition of symmetrical images using affine moment invariants in both frequency and spatial domains[J]. Pattern Anal Appl,2002,5(3):316-325. [15] MINDRU F,TUYTELAARS T,GOOL L V,et al. Moment invariants for recognition under changing viewpoint and illumination[J]. Computer Vis. Image Und.,2004,94(1-3):3-27. [16] KANTOR I L,SOLODOVNIKOV A S. Hypercomplex Number:An Elementary Introduction to Algebras[M]. NewYork:Springer-Verlag,1989. [17] 郭立强. 基于四元数的彩色图像处理算法研究. 北京:中国科学院研究生院 ,2011. GUO L Q. The study of color image processing algorithms based on quaternion. Beijing:Graduate University of Chinese Academy of Sciences,2011.(in Chinese) [18] ROTHE I,SUSSE H,VOSS K. The method of normalization to determine invariants[J]. IEEE Trans. PAMI,1996,18(4):366-376.
点击查看大图
计量
- 文章访问数: 3284
- HTML全文浏览量: 387
- PDF下载量: 1266
- 被引次数: 0