留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有复杂光谱特征的丙烯气体的TDLAS检测技术研究

钟笠,宋迪,焦月,李晗,李国林,季文海

downloadPDF
钟笠, 宋迪, 焦月, 李晗, 李国林, 季文海. 具有复杂光谱特征的丙烯气体的TDLAS检测技术研究[J]. , 2020, 13(5): 1044-1054. doi: 10.37188/CO.2019-0203
引用本文: 钟笠, 宋迪, 焦月, 李晗, 李国林, 季文海. 具有复杂光谱特征的丙烯气体的TDLAS检测技术研究[J]. , 2020, 13(5): 1044-1054.doi:10.37188/CO.2019-0203
ZHONG Li, SONG Di, JIAO Yue, LI Han, LI Guo-lin, JI Wen-hai. TDLAS detection of propylene with complex spectral features[J]. Chinese Optics, 2020, 13(5): 1044-1054. doi: 10.37188/CO.2019-0203
Citation: ZHONG Li, SONG Di, JIAO Yue, LI Han, LI Guo-lin, JI Wen-hai. TDLAS detection of propylene with complex spectral features[J].Chinese Optics, 2020, 13(5): 1044-1054.doi:10.37188/CO.2019-0203

具有复杂光谱特征的丙烯气体的TDLAS检测技术研究

doi:10.37188/CO.2019-0203
基金项目:山东省自然科学基金(No. ZR2017LF023);青岛科技惠民专项(No. 17-3-3-89-nsh);吉林大学集成光电子学国家重点实验室开放课题(No. IOSKL2017KF01);中国石油大学(华东)自主创新计划(No. 19CX02045A);山东省重点研发课题(No. 2019GHY112084,No. 2019GGX104103)
详细信息
    作者简介:

    钟 笠(1995—),男,湖北孝感人,硕士研究生,2017年于中国石油大学(华东)获得学士学位,主要从事光电检测技术方面的研究。E-mail:upczhongli@163.com

    李国林(1987—),男,山东潍坊人,博士,硕士生导师,2010,2015年于吉林大学分别获得电子信息工程专业学士学位,电路与系统博士学位,主要从事红外光谱技术、红外气体传感以及光电信号检测等痕量气体检测方面的研究。E-mail :liguolin@upc.edu.cn

    季文海(1975—),男,山东聊城人,博士,副教授,硕士生导师,1998年于华东师范大学获得学士学位,2002年、2007年于美国俄勒冈大学(University of Oregon)分别获得硕士和博士学位,主要从事 光谱技术的过程分析和安全检测方面的研究。E-mail:jiwenhai@upc.edu.cn

    通讯作者:

    季文海 E-mail:jiwenhai@upc.edu.cn手机号:17753282258 通讯地址:山东省青岛市西海岸新区长江西路66号中国石油大学(华东)控制科学与工程学院

  • 中图分类号:O433.1

TDLAS detection of propylene with complex spectral features

Funds:Supported by Natural Science Foundation of Shandong Province (No. ZR2017LF023); Huimin Special Project of Qingdao Science and Technology Bureau (No. 17-3-3-89-nsh); Jilin University State Key Laboratory on Integrated Optoelectronics Open Research Grant (No. IOSKL2017KF01); China University of Petroleum (East China) Independent Innovation Program(No. 19CX02045A); Shandong Provincial Key R&D Projects ( No. 2019GHY112084, No. 2019GGX104103)
More Information
  • 摘要:本文针对化工过程中在线检测丙烯的需求,研究了基于调制吸收光谱技术(TDLAS)的检测技术,提出了一种独立于光谱线型特征的数值仿真方法,考虑实际 光源宽线宽对吸光度的影响,通过对比仿真和实验的光谱幅度变化规律,确定了丙烯气体分析装置的设计参数和技术方案,选择中心波长为1 628.5 nm的宽调谐DFB 器,采用差分方案去除解调光谱的直流偏置,采用多元回归模型降低化工过程的背景气体光谱干扰。在模拟实际环境的气体实验中,该装置在0~1% 量程内的最大相对误差为0.55%。对0.2% 的丙烯进行3小时连续测量,标准差为9.3×10 −6;Allen方差分析发现在积分时间为221.9 s 时,极限标准差可达1.33×10 −6。在抗干扰测试中,当背景气体甲烷、乙烯的浓度变化时,丙烯的测量误差最大仅为19.17×10 −6。调制吸收光谱技术克服了色谱和软测量等传统方法的不足,TDLAS装置可检测有复杂光谱特征的重烃分子,展示了测量精度高、稳定性好、抗背景光谱干扰能力强等优点。

  • 图 1数据库中C3H6、CH4、C2H4、C2H6在1 628 nm附近的吸光度

    Figure 1.Gas absorbance of C3H6、CH4、C2H4and C2H6near 1 628 nm in database

    图 2丙烯光谱的3种线型拟合结果。(a)线型拟合;(b)拟合残差

    Figure 2.Fitting results of three line types of propylene spectrum. (a) Absorption profile; (b) fitting residual

    图 3 器的线宽对丙烯光谱的影响。 (a)线宽对吸光度的影响;(b)线宽对丙烯仿真2f光谱的影响

    Figure 3.The influence of laser linewidth on propylene spectrum. (a) Absorbance of propylene; (b) simulation 2f spectra of propylene

    图 4不同调制幅度下C3H6的吸收光谱。(a)数值仿真;(b)实验采集

    Figure 4.Absorption spectra of C3H6with different modulation amplitudes. (a) Numerical simulation; (b) experiment

    图 5不同调制幅度下C3H6的2f光谱峰值强度

    Figure 5.2f spectra intensity of C3H6at different modulation amplitudes

    图 6实验系统装置图

    Figure 6.Scheme of the experimental system

    图 7 器的波长、功率与电流的关系

    Figure 7.Relations of laser wavelength and power withcurrent

    图 8差分方案设计的C3H6实验光谱

    Figure 8.Experimental spectra of C3H6in the differential scheme

    图 9分析装置采集到的C3H6、CH4、C2H4吸收光谱和N2背景下光功率变化图

    Figure 9.Absorption spectra of C3H6、CH4、C2H4and optical power in N2background acquired through the analyzer

    图 10(a)步进测试过程中分析装置丙烯浓度读数曲线;(b)丙烯浓度设定值与分析装置测量值线性关系曲线

    Figure 10.(a) Analyzer reading of C3H6concentration in step test;(b) the linear response of C3H6analyzer measurement vs. setting gas concentration

    图 11稳定性测试结果。(a)丙烯浓度固定时分析装置浓度读数曲线; (b)Allan方差分析

    Figure 11.Stability test results. (a) Analysis device reading curve when propylene concentration is fixed; (b) Allan deviation analysis

    图 12CH4、C2H6背景气体浓度变化情况下装置的C3H6浓度读数

    Figure 12.C3H6concentration reading varying with the concentration of the background gas CH4and C2H6

    表 1步进测试的丙烯测量精度

    Table 1.Measurement error of C3H6concentration in step test (×10 −6)

    Setting
    concentration
    Measured
    concentration
    Std.
    Deviation
    Absolute
    error
    0 −12.12 6.20 12.12
    1 000 1 020.09 19.47 20.09
    2 000 2 022.57 41.73 22.57
    5 000 5 055.13 51.52 55.13
    10 000 10 014.32 58.67 14.32
    下载: 导出CSV

    表 2抗干扰测试结果

    Table 2.Results of anti-interference test (10 −6)

    Section Interfering CH4 Interfering C2H6 Measured concentration Std. deviation Absolute error
    1 2 000 0 1 997.58 33.96 −2.42
    2 1 000 10 2 003.46 33.84 3.46
    3 500 100 1 993.64 33.63 −6.36
    4 0 300 2 019.17 35.64 19.17
    下载: 导出CSV
  • AKAH A, AL-GHRAMI M. Maximizing propylene production via FCC technology[J].Applied Petrochemical Research, 2015, 5(4): 377-392.doi:10.1007/s13203-015-0104-3
    王振雷, 叶贞成, 钱锋. 丙烯精馏塔智能控制系统设计及应用[J]. 化工学报,2010,61(2):347-351.

    WANG ZH L, YE ZH CH, QIAN F. Design and implementation of intelligent control system for propylene distillation column[J].CIESC Journal, 2010, 61(2): 347-351. (in Chinese)
    ZHANG F, WANG J H, TIAN D L,et al. Research on unregulated emissions from an alcohols-gasoline blend vehicle using FTIR, HPLC and GC-MS measuring methods[J].SAE International Journal of Engines, 2013, 6(2): 1126-1137.doi:10.4271/2013-01-1345
    KNIGHTON W B, HERNDON S C, FRANKLIN J F,et al. Direct measurement of volatile organic compound emissions from industrial flares using real-time online techniques: Proton transfer reaction mass spectrometry and tunable infrared laser differential absorption spectroscopy[J].Industrial&Engineering Chemistry Research, 2012, 51(39): 12674-12684.
    韩明聪, 董俊国, 彭真, 等. 质子转移反应-飞行时间质谱检测呼出气体中痕量挥发性有机物[J]. 分析化学,2018,46(7):1109-1115.doi:10.11895/j.issn.0253-3820.171532

    HAN M C, DONG J G, PENG ZH,et al. Proton transfer reaction time-of-flight mass spectrometry for detection of trace volatile organic compounds in breath[J].Chinese Journal of Analytical Chemistry, 2018, 46(7): 1109-1115. (in Chinese)doi:10.11895/j.issn.0253-3820.171532
    张强领, 邹雪, 梁渠, 等. 大气挥发性有机物实时在线监测的双极性质子转移反应质谱仪研制[J]. 分析化学,2018,46(4):471-478.doi:10.11895/j.issn.0253-3820.171234

    ZHANG Q L, ZOU X, LIANG Q,et al. Development of dipolar proton transfer reaction mass spectrometer for real-time monitoring of volatile organic compounds in ambient air[J].Chinese Journal of Analytical Chemistry, 2018, 46(4): 471-478. (in Chinese)doi:10.11895/j.issn.0253-3820.171234
    张斌. 基于多神经网络结构的丙烯浓度软测量建模[J]. 计算机与应用化学,2014,31(3):374-376.

    ZHANG B. Soft sensor modeling for propylene concentration based on MNN[J].Computers and Applied Chemistry, 2014, 31(3): 374-376. (in Chinese)
    齐汝宾, 尹新, 杨立, 等. 多成分有机气体的近红外光谱定量检测方法[J]. 光谱学与光谱分析,2008,28(12):2855-2858.doi:10.3964/j.issn.1000-0593(2008)12-2855-04

    QI R B, YIN X, YANG L,et al. Application of NIR spectroscopy to multiple gas components identification[J].Spectroscopy and Spectral Analysis, 2008, 28(12): 2855-2858. (in Chinese)doi:10.3964/j.issn.1000-0593(2008)12-2855-04
    BENALIOUCHE F, BOUCHEFFA Y, THIBAULT-STARZYK F. In situ FTIR studies of propene adsorption over Ag- and Cu-exchanged Y zeolites[J].Microporous and Mesoporous Materials, 2012, 147(1): 10-16.doi:10.1016/j.micromeso.2011.04.040
    冯书香, 徐亮, 高闽光, 等. 基于太阳光谱的FTIR技术监测石油化工区丙烯的浓度分布[J]. 红外技术,2012,34(3):168-172.

    FENG SH X, XU L, GAO M G,et al. Application of Fourier transform infrared spectroscopy based on sun spectrum to monitor the distribution of propylene from petrochemical industry[J].Infrared Technology, 2012, 34(3): 168-172. (in Chinese)
    HARWARD SR C N, BAREN R E, PARRISH M E. Determination of molecular parameters for 1, 3-butadiene and propylene using infrared tunable diode laser absorption spectroscopy[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2004, 60(14): 3421-3429.doi:10.1016/j.saa.2003.11.049
    吕晓翠, 李国林, 季文海, 等. 基于特征提取的极限学习机算法在可调谐二极管 吸收光谱学中的应用[J]. 中国 ,2018,45(9):0911013.doi:10.3788/CJL201845.0911013

    LV X C, LI G L, JI W H,et al. Application of feature-extraction-based extreme learning machine algorithm in tunable diode laser absorption spectroscopy[J].Chinese Journal of Lasers, 2018, 45(9): 0911013. (in Chinese)doi:10.3788/CJL201845.0911013
    朱晓睿, 卢伟业, 饶雨舟, 等. TDLAS直接吸收法测量CO2的基线选择方法[J]. 中国光学,2017,10(4):455-461.doi:10.3788/co.20171004.0455

    ZHU X R, LU W Y, RAO Y ZH,et al. Selection of baseline method in TDLAS direct absorption CO2measurement[J].Chinese Optics, 2017, 10(4): 455-461. (in Chinese)doi:10.3788/co.20171004.0455
    聂伟, 阚瑞峰, 杨晨光, 等. 可调谐二极管 吸收光谱技术的应用研究进展[J]. 中国 ,2018,45(9):0911001.doi:10.3788/CJL201845.0911001

    NIE W, KAN R F, YANG CH G,et al. Research progress on the application of tunable diode laser absorption spectroscopy[J].Chinese Journal of Lasers, 2018, 45(9): 0911001. (in Chinese)doi:10.3788/CJL201845.0911001
    LI CH L, GUO X Q, JI W H,et al. Etalon fringe removal of tunable diode laser multi-pass spectroscopy by wavelet transforms[J].Optical and Quantum Electronics, 2018, 50(7): 275.doi:10.1007/s11082-018-1539-4
    臧益鹏, 聂伟, 许振宇, 等. 基于可调谐二极管 吸收光谱的痕量水汽测量[J]. 光学学报,2018,38(11):1130004.

    ZANG Y P, NIE W, XU ZH Y,et al. Measurement of trace water vapor based on tunable diode laser absorption spectroscopy[J].Acta Optica Sinica, 2018, 38(11): 1130004. (in Chinese)
    GAO Y W, ZHANG Y J, CHEN D,et al. Laser absorption spectroscopy for detection of hydrogen fluoride using tunable diode laser[J].Acta Photonica Sinica, 2015, 44(6): 0630003.doi:10.3788/gzxb20154406.0630003
    曹天书. TDLAS气体检测中二次谐波的锁相放大器的研究[D]. 长春: 吉林大学, 2013.

    CAO T SH. Lock-in amplifier of second harmonic in the TDLAS gas detection[D]. Changchun: Jilin University, 2013. (in Chinese)
    刘铭晖, 董作人, 辛国锋, 等. 基于Voigt函数拟合的拉曼光谱谱峰判别方法[J]. 中国 ,2017,44(5):0511003.doi:10.3788/CJL201744.0511003

    LIU M H, DONG Z R, XIN G F,et al. Discrimination method of raman spectral peaks based on Voigt function fitting[J].Chinese Journal of Lasers, 2017, 44(5): 0511003. (in Chinese)doi:10.3788/CJL201744.0511003
    KLUCZYNSKI P, GUSTAFSSON J, LINDBERG Å M,et al. Wavelength modulation absorption spectrometry-an extensive scrutiny of the generation of signals[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2001, 56(8): 1277-1354.doi:10.1016/S0584-8547(01)00248-8
    ZHOU X. Diode-laser absorption sensors for combustion control[D]. Stanford: Stanford University, 2005.
    谢越, 李飞跃, 范行军, 等. 基于近红外光谱技术的生物炭组分分析[J]. 分析化学,2018,46(4):609-615.doi:10.11895/j.issn.0253-3820.171084

    XIE Y, LI F Y, FAN X J,et al. Component analysis of biochar based on near infrared spectroscopy technology[J].Chinese Journal of Analytical Chemistry, 2018, 46(4): 609-615. (in Chinese)doi:10.11895/j.issn.0253-3820.171084
    ZHENG CH T, YE W L, SANCHEZ N P,et al. Infrared dual-gas CH4/C2H6sensor using two continuous-wave interband cascade lasers[J].IEEE Photonics Technology Letters, 2016, 28(21): 2351-2354.doi:10.1109/LPT.2016.2594028
  • 加载中
图(12)/ 表(2)
计量
  • 文章访问数:3933
  • HTML全文浏览量:927
  • PDF下载量:124
  • 被引次数:0
出版历程
  • 收稿日期:2019-10-22
  • 修回日期:2019-12-09
  • 网络出版日期:2020-06-29
  • 刊出日期:2020-10-01

目录

    /

      返回文章
      返回
        Baidu
        map