留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K-B镜面形高精度检测技术研究进展

张帅 侯溪

张帅, 侯溪. K-B镜面形高精度检测技术研究进展[J]. 188bet网站真的吗 , 2020, 13(4): 660-675. doi: 10.37188/CO.2019-0231
引用本文: 张帅, 侯溪. K-B镜面形高精度检测技术研究进展[J]. 188bet网站真的吗 , 2020, 13(4): 660-675. doi: 10.37188/CO.2019-0231
ZHANG Shuai, HOU Xi. Research progress of high-precision surface metrology of a K-B mirror[J]. Chinese Optics, 2020, 13(4): 660-675. doi: 10.37188/CO.2019-0231
Citation: ZHANG Shuai, HOU Xi. Research progress of high-precision surface metrology of a K-B mirror[J]. Chinese Optics, 2020, 13(4): 660-675. doi: 10.37188/CO.2019-0231

K-B镜面形高精度检测技术研究进展

基金项目: 国家自然科学基金面上资助项目(No. 61675209)
详细信息
    作者简介:

    张 帅(1994—),男,河南平顶山人,硕士研究生,2018年于长春理工大学获得学士学位,主要从事高精度X射线光学元件面形检测装置研究。Email:zhangshuai18@mails.uacs.ac.cn

    侯 溪(1980—),男,四川阆中人,博士,研究员,博士生导师,2002年于电子科技大学获得学士学位,2007年于中国科学院研究生院获得博士学位,主要从事高精度光学检测技术研究及仪器研制。Email:hxxh6776@163.com

  • 中图分类号: TN247

Research progress of high-precision surface metrology of a K-B mirror

Funds: Supported by General Program of National Natural Science Foundation of China (No. 61675209)
More Information
  • 摘要: 以新一代同步辐射光源和全相干X射线自由电子金宝搏188软件怎么用 为代表的先进光源已成为众多学科领域中一种不可或缺的研究工具。先进光源技术不断进步,驱动超精密光学制造快速发展,先进光源中关键聚焦光学元件K-B镜的面形精度是影响光源性能的重要指标,要求其在几十纳弧度以下。然而,高精度K-B镜面形检测技术依然存在较大技术挑战,一直是国内外研究热点。本文介绍了反射式轮廓测量技术即长程轮廓仪(LTP)、纳米测量仪(NOM)以及拼接干涉检测技术等典型K-B镜面形检测技术的基本原理,对比分析了其技术特点,综述了国内外K-B镜面形检测技术的研究现状和最新进展,对发展趋势进行了展望。

     

  • 图 1  (a)经典一维K-B镜和(b)具有二维弯曲的K-B镜

    Figure 1.  (a) Typical K-B mirror and (b) K-B mirror with two-dimensional bending

    图 2  LTP光学系统原理图

    Figure 2.  Principle diagram of LTP optical system

    图 3  NOM原理图[16]

    Figure 3.  Principle diagram of NOM system[16]

    图 4  拼接原理图

    Figure 4.  The principle of stitching

    图 5  曲率变化剧烈的柱面镜的干涉条纹图

    Figure 5.  Interference fringe pattern of cylindrical mirror with sharp curvature change

    图 6  LTP/NOM发展历程[16, 21, 23, 25, 27, 28]

    Figure 6.  The development of LTP/NOM[16, 21, 23, 25, 27, 28]

    图 7  (a) ESRF中的拼接干涉仪及其(b)测量过程[40]

    Figure 7.  (a) Fizeau stitching interferometer at ESRF and its (b) measurement process[40]

    图 8  SPring-8中的MSI原理图[43]

    Figure 8.  Diagram of microstitching interferometry at SPring-8[43]

    图 9  ESRF中的MSI装置[46]

    Figure 9.  Microstitching interferometry at ESRF[46]

    图 10  SOLEIL中Michelson型显微拼接干涉仪[47]

    Figure 10.  Michelson stitching interferometry at SOLEIL[47]

    图 11  (a) RADSI装置图及其 (b) 测量过程[48]

    Figure 11.  (a) Scheme of RADSI system and (b) its measurement process[48]

    图 12  RADSI发展路线图[42, 48, 50, 52]

    Figure 12.  The development of RADSI[42, 48, 50, 52]

    图 13  2D-TSI装置原理图[57]

    Figure 13.  The scheme of 2D-TSI device[57]

    图 14  先进光源硬X射线聚焦尺寸演变

    Figure 14.  The trend of hard X-ray focusing size

    图 15  K-B镜面形精度趋势[36]

    Figure 15.  The trend of K-B mirror shape accuracy [36]

    图 16  K-B镜面形检测技术发展过程图

    Figure 16.  Development of K-B mirror surface metrology

    表  1  LTP/NOM技术典型参数

    Table  1.   Specifications of LTP/NOM

    类型LTPNOM
    工作距离/mm100~1100300~1300
    斜率/mrad±5±5
    扫描速率/(mm·s−1)5~102~4
    精度(RMS)/nrad平面: ~50
    曲面: ~250
    平面: ~50
    曲面: ~500
    空间分辨率/mm~12.5~5
    下载: 导出CSV

    表  2  国内外典型LTP/NOM技术参数

    Table  2.   Technical specifications of typical LTP/NOM technologies at home and abroad

    类型机构/装置设备时间测量范围性能备注
    LTP日本JASRI/SPring-8Laser-LTP20143.6 mrad0.2 μrad
    重复精度60 nrad
    金宝搏188软件怎么用 校准测头误差
    分辨率30 nrad
    LTP2016~1 m5 nm新型斜率传感器;
    空间分辨率<1 mm
    美国LBNLALSLTP-II+20141 m
    ±2.5 mrad
    平面:<80 rad rms
    曲面(>15 m): 250 nrad rms
    校正K-B位置误差
    中国台湾NSRRCNLTP20131.2 m测量重复精度50 nrad定位基准为衍射暗线;
    光束定位精度高
    中国SSRF上海光源LTP20161 m平面:<50 nrad
    曲面(>38 m): 0.27μrad
    支持快速测量
    中国IHEP高能所FSP20191 m平面:25 nrad rms
    曲面(3 mrad): 32 nrad rms
    空间分辨率优于1 mm
    NOM巴西LNLSNOM20171.5 m平面:50 nrad rms横向分辨率大
    德国BESSY-IIDiamond-NOM20141.5 m
    ±5 mrad
    平面:50 nrad rms
    曲面:200 nrad rms (±24μrad)
    500 nrad rms (±5 mrad)
    曲率测量范围大
    美国BNLDLTP20141 m
    ±4.6 mrad
    平面:60 nrad rms
    曲面(>15 m): 200 nrad rms
    曲面测量受限
    OSMS20171.2 m平面:<50 nrad rms
    曲面(>60 m): 100 nrad rms
    实现二维测量
    日本JASRI/SPring-8AC-NOM20149.7 mrad±1.2μrad ±0.24μrad (48μrad)
    重复精度100 nrad rms
    校准扫描俯仰误差; 扫描速度慢分辨率24.2 nrad
    中国SSRF上海光源NOM20151100 mm
    ±5 mrad
    0.08μrad rms (±50μrad)
    0.25μrad rms (±5 mrad)
    空间采样频率在1~10 mm
    重复精度50 nrad rms
    下载: 导出CSV

    表  3  3种类型拼接干涉仪对比[40, 51, 56]

    Table  3.   Comparison of three types of stitching interferometer [40, 51, 56]

    主动角控制拼接干涉仪
    控制算法+精密转台
    测角拼接干涉仪
    测角系统(RADSI)
    测角辅助拼接干涉仪
    测角辅助装置+拼接算法
    大口径、小曲率长焦K-B镜
    300~1000 mm; <20 mrad
    小口径、大曲率短焦K-B镜
    100~300 mm; >20 mrad
    平面镜、小曲率椭圆柱镜(探索阶段)
    平面优于0.30 nm rms
    曲面优于0.30 μrad rms
    步进单孔径测量(干涉仪尺寸)
    平面优于0.2 nm rms
    曲面优于2 nm rms
    步进单孔径测量: 2 mm×2 mm
    重复精度1.5 nm rms
    步进单孔径量: 2 mm×2 mm
    结构相对简单,测量口径范围大,
    测量效率高 测量频段有限,
    测量精度受待测面曲率影响大
    测量频段宽,测量精度高,
    曲率测量范围大,结构复杂,
    易受环境影响,测量口径范围受限
    结构简单,动态范围大,测量精度高
    有待进一步完善具体结构
    下载: 导出CSV

    表  4  国内外典型拼接干涉仪技术参数

    Table  4.   Technical parameters of typical stitching interferometer at home and abroad

    机构/装置设备时间技术性能备注
    欧洲ERSFFizeau-SI2019平面镜:优于0.30 nm rms
    椭面镜:优于0.30 μrad rms
    球面镜:优于0.25 μrad rms
    主镜法校正参考误差需弥补球面低频信息空间分辨率: 80 μm
    MSI2019平面: 0.2 nm rms
    横向分辨率: (2.5倍) 16 μm; (1倍) 40 μm
    适合于平面或强弯短镜;
    存在拼接伪影
    美国BNLMSI2017残余斜率偏差: 2 μrad rms采用曲率拼接技术
    ASI-AMS2018平面:重复精度0.5 nm rms
    椭球面:重复精度2 nm rms
    可以减小回程误差; 子孔径重叠
    面积小,测量速度快
    日本大阪大学MSI-RADSI2016面型高度误差:3 nm rms
    重复精度:0.51 nm rms
    可测极端曲率面形以及椭面镜;
    测量范围有限
    法国SOLEILMich-SI2019重复精度:0.2 nm rms可测20 mm−1频段面形信息
    复旦大学RADSI2017平面镜:重复精度0.5 nm rms
    球面镜:曲率偏差为2.3%
    验证了RADSI球面测量能力
    国防科技大学DST2018测量PV值8 nm;
    重复精度达到1.5 nm rms
    一维测量;双扫描间隔; 减小回程
    误差及参考误差
    下载: 导出CSV
    Baidu
  • [1] KIRKPATRICK P, BAEZ A V. Formation of optical images by X-rays[J]. Journal of the Optical Society of America, 1948, 38(9): 766-774. doi: 10.1364/JOSA.38.000766
    [2] GIEWEKEMEYER K, WILKE R N, OSTERHOFF M, et al. Versatility of a hard X-ray kirkpatrick–baez focus characterized by ptychography[J]. Journal of Synchrotron Radiation, 2013, 20(3): 490-497. doi: 10.1107/S0909049513005372
    [3] NAULLEAU P P, GOLDBERG K A, BATSON P J, et al. Tolerancing of diffraction-limited Kirkpatrick-Baez synchrotron beamline optics for extreme-ultraviolet metrology[J]. Applied Optics, 2001, 40(22): 3703-3709. doi: 10.1364/AO.40.003703
    [4] MATSUYAMA S, YAMADA J, KOHMURA Y, et al. Full-field X-ray fluorescence microscope based on total-reflection advanced Kirkpatrick-Baez mirror optics[J]. Optics Express, 2019, 27(13): 18318-18328. doi: 10.1364/OE.27.018318
    [5] KODAMA R, IKEDA N, KATO Y, et al. Development of an advanced Kirkpatrick-Baez microscope[J]. Optics Letters, 1996, 21(17): 1321-1323. doi: 10.1364/OL.21.001321
    [6] HUDEC R, PINA L, VAN INNEMAN A, et al. Lightweight x-ray optics for future space missions[J]. Proceedings of SPIE, 2003, 4851: 656-665. doi: 10.1117/12.461590
    [7] YUMOTO H, MIMURA H, KOYAMA T, et al. Focusing of X-ray free-electron laser pulses with reflective optics[J]. Nature Photonics, 2012, 7(1): 43-47.
    [8] SIEWERT F, BUCHHEIM J, BOUTET S, et al. Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry[J]. Optics Express, 2012, 20(4): 4525-4536. doi: 10.1364/OE.20.004525
    [9] HEYNACHER E, REINHARDT D. Measuring equipment for testing the directrix of high-resolution wolter-type telescopes[J]. Proceedings of SPIE, 1979, 184: 167-169. doi: 10.1117/12.957446
    [10] COCCO D, IDIR M, MORTON D, et al. Advances in X-ray optics: from metrology characterization to wavefront sensing-based optimization of active optics[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2018, 907: 105-115.
    [11] QIAN S, TAKACS P. Nano-accuracy Surface Figure Metrology of Precision Optics[M]. COCCO L. Modern Metrology Concerns. Rijeka: Intech Open, 2012.
    [12] OWADA S, TOGAWA K, INAGAKI T, et al. A soft X-ray free-electron laser beamline at SACLA: the light source, photon beamline and experimental station[J]. Journal of Synchrotron Radiation, 2018, 25(1): 282-288. doi: 10.1107/S1600577517015685
    [13] YANDAYAN T, GECKELER R D, SIEWERT F. Pushing the limits: latest developments in angle metrology for the inspection of ultra-precise synchrotron optics[J]. Proceedings of SPIE, 2014, 9206: 92060F.
    [14] TAKACS P Z, FENG S C K, CHURCH E L, et al. Long trace profile measurements on cylindrical aspheres[J]. Proceedings of SPIE, 1989, 966: 354-364. doi: 10.1117/12.948082
    [15] TAKACS P Z, QIAN SH N, COLBERT J. Design of a long trace surface profiler[J]. Proceedings of SPIE, 1987, 749: 59-64. doi: 10.1117/12.939842
    [16] SIEWERT F, LAMMERT H, NOLL T, et al. Advanced metrology: an essential support for the surface finishing of high performance x-ray optics[J]. Proceedings of SPIE, 2005, 5921: 592101. doi: 10.1117/12.622747
    [17] SIEWERT F, ZESCHKE T, ARNOLD T, et al. Linear chirped slope profile for spatial calibration in slope measuring deflectometry[J]. Review of Scientific Instruments, 2016, 87(5): 051907. doi: 10.1063/1.4950737
    [18] OTSUBO M, OKADA K, TSUJIUCHI J. Measurement of large plane surface shapes by connecting small-aperture interferograms[J]. Optical Engineering, 1994, 33(2): 608-613. doi: 10.1117/12.152248
    [19] IRICK S C, MCKINNEY W R, LUNT D L J, et al. Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler[J]. Review of Scientific Instruments, 1992, 63(1): 1436-1438. doi: 10.1063/1.1143036
    [20] QIAN SH N, LI H ZH, TAKACS P Z. Penta-Prism Long Trace Profiler (PPLTP) for measurement of grazing incidence space optics[J]. Proceedings of SPIE, 1996, 2805: 108-114. doi: 10.1117/12.245083
    [21] QIAN SH N, SOSTERO G, TAKACS P Z. Precision calibration and systematic error reduction in the long trace profiler[J]. Optical Engineering, 2000, 39(1): 304-310. doi: 10.1117/1.602364
    [22] PEDREIRA P, NICOLAS J, ŠICS I, et al. Deflectometry encoding the measured angle in a time-dependent intensity signal[J]. Review of Scientific Instruments, 2019, 90(2): 021707. doi: 10.1063/1.5057768
    [23] QIAN SH N, TAKACS P Z. Design of multiple-function long trace profiler[J]. Optical Engineering, 2007, 46(4): 043602. doi: 10.1117/1.2724851
    [24] FLORIOT J, LEVECQ X, BUCOURT S, et al. A Shack–Hartmann measuring head for the two-dimensional characterization of X-ray mirrors[J]. Journal of Synchrotron Radiation, 2008, 15(2): 134-139. doi: 10.1107/S0909049507066083
    [25] IDIR M, KAZNATCHEEV K, DOVILLAIRE G, et al. A 2 D high accuracy slope measuring system based on a stitching shack hartmann optical head[J]. Optics Express, 2014, 22(3): 2770-2781. doi: 10.1364/OE.22.002770
    [26] ALCOCK S G, SAWHNEY K J S, SCOTT S, et al. The Diamond-NOM: a non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2010, 616(2-3): 224-228. doi: 10.1016/j.nima.2009.10.137
    [27] QIAN SH N, IDIR M. Innovative nano-accuracy surface profiler for sub-50 nrad rms mirror test[J]. Proceedings of SPIE, 2016, 9687: 96870D.
    [28] GECKELER R D. ESAD shearing deflectometry: potentials for synchrotron beamline metrology[J]. Proceedings of SPIE, 2006, 6317: 63171H. doi: 10.1117/12.716301
    [29] LACEY I, ADAM J, CENTERS G P, et al. Development of a high performance surface slope measuring system for two-dimensional mapping of x-ray optics[J]. Proceedings of SPIE, 2017, 10385: 103850G.
    [30] QIAN SH N, WANG Q P, HONG Y L, et al. Multiple Functions Long Trace Profiler (LTP-MF) for national synchrotron radiation laboratory of China[J]. Proceedings of SPIE, 2005, 5921: 592104. doi: 10.1117/12.618800
    [31] ZENG D H, XIAO T Q, DU G H, et al. New long trace profiler based on phase plate diffraction for optical metrology of SSRF[J]. Review of Scientific Instruments, 2006, 77(9): 093305. doi: 10.1063/1.2186253
    [32] 李直, 赵洋, 李达成, 等. 衍射型长程大型非球面轮廓测量仪[J]. 光学学报,2002,22(10):1224-1228. doi: 10.3321/j.issn:0253-2239.2002.10.014

    LI ZH, ZHANG Y, LI D CH, et al. A diffractive long trace profiler for large aspherical optics[J]. Acta Optica Sinica, 2002, 22(10): 1224-1228. (in Chinese) doi: 10.3321/j.issn:0253-2239.2002.10.014
    [33] SHUN L, YAN G, WEI ZH, et al. Design of co-path scanning long trace profiler for measurement of x-ray space optical elements[J]. Proceedings of SPIE, 2010, 7544: 754421. doi: 10.1117/12.885415
    [34] 澎湃新闻. 高能同步辐射光源验证装置通过国家验收, 最亮光源年中开建[OL]. https://www.thepaper.cn/newsDetail_forward_2935727. 2019-1-31.

    The Paper. The verification device of high energy synchrotron radiation light source has passed acceptance, and the brightest light source will be built in the middle of the year [OL]. https://www.thepaper.cn/newsDetail_forward_2935727. 2019-1-31.
    [35] 秦超.同步辐射椭圆柱面压弯镜机构的研究[D]. 北京: 中国科学院大学(中国科学院上海应用物理研究所), 2018.

    QIN CH. Research on synchrotron radiation elliptic cylinder mirror bender[D]. Beijing: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics, Chinese Academy of Sciences), 2018. (in Chinese)
    [36] SIEWERT F, BUCHHEIM J, ZESCHKE T, et al. On the characterization of ultra-precise X-ray optical components: advances and challenges in ex situ metrology[J]. Journal of Synchrotron Radiation, 2014, 21(5): 968-975. doi: 10.1107/S1600577514016221
    [37] ASSOUFID L, BRAY M, QIAN J, et al. 3D surface profile measurements of large x-ray synchrotron radiation mirrors using stitching interferometry[J]. Proceedings of SPIE, 2002: 4728.
    [38] VIVO A, LANTELME B, BAKER R, et al. Stitching methods at the European Synchrotron Radiation Facility (ESRF)[J]. Review of Scientific Instruments, 2016, 87(5): 051908. doi: 10.1063/1.4950745
    [39] VIVO A, BARRETT R. Fizeau stitching at the European Synchrotron Radiation Facility (ESRF)[J]. Proceedings of SPIE, 2017, 10385: 103850N.
    [40] VIVO A, BARRETT R, PERRIN F. Stitching techniques for measuring X-ray synchrotron mirror topography[J]. Review of Scientific Instruments, 2019, 90(2): 021710. doi: 10.1063/1.5063339
    [41] WIEGMANN A, STAVRIDIS M, WALZEL M, et al. Accuracy evaluation for sub-aperture interferometry measurements of a synchrotron mirror using virtual experiments[J]. Precision Engineering, 2011, 35(2): 183-190. doi: 10.1016/j.precisioneng.2010.08.007
    [42] YAMAUCHI K, YAMAMURA K, MIMURA H, et al. Microstitching interferometry for x-ray reflective optics[J]. Review of Scientific Instruments, 2003, 74(5): 2894-2898. doi: 10.1063/1.1569405
    [43] OHASHI H, TSUMURA T, OKADA H, et al. Microstitching interferometer and relative angle determinable stitching interferometer for half-meter-long x-ray mirror[J]. Proceedings of SPIE, 2007, 6704: 670405. doi: 10.1117/12.733476
    [44] GEVORKYAN G S, CENTERS G, POLONSKA K S, et al.. Surface slope metrology of highly curved x-ray optics with an interferometric microscope[C]. Proceedings of SPIE, 2017, 10385: 103850H.
    [45] ASSOUFID L, QIAN J, KEWISH C M, et al. A microstitching interferometer for evaluating the surface profile of precisely figured X-ray K-B mirrors[J]. Proceedings of SPIE, 2007, 6704: 670406. doi: 10.1117/12.736384
    [46] ROMMEVEAUX A, BARRETT R. Micro-stitching interferometry at the ESRF[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2010, 616(2-3): 183-187.
    [47] POLACK F, THOMASSET M, BROCHET S, et al. Surface shape determination with a stitching Michelson interferometer and accuracy evaluation[J]. Review of Scientific Instruments, 2019, 90(2): 021708. doi: 10.1063/1.5061930
    [48] MIMURA H, YUMOTO H, MATSUYAMA S, et al.. Microstitching interferometry for nanofocusing mirror optics[C]. Proceedings of SPIE, 2004, 5533: 170-180.
    [49] KIMURA T, OHASHI H, MIMURA H, et al. A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2010, 616(2-3): 229-232. doi: 10.1016/j.nima.2009.11.014
    [50] YUMOTO H, MIMURA H, KIMURA T, et al. Stitching interferometric metrology for steeply curved x-ray mirrors[J]. Surface and Interface Analysis, 2008, 40(6-7): 1023-1027. doi: 10.1002/sia.2807
    [51] YUMOTO H, MIMURA H, HANDA S, et al. Stitching-angle measurable microscopic-interferometer: surface-figure metrology tool for hard X-ray nanofocusing mirrors with large curvature[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2010, 616(2-3): 203-206.
    [52] YUMOTO H, KOYAMA T, MATSUYAMA S, et al. Stitching interferometry for ellipsoidal x-ray mirrors[J]. Review of Scientific Instruments, 2016, 87(5): 051905. doi: 10.1063/1.4950714
    [53] EHRET G, LAUBACH S, SCHULZ M. Flatness metrology based on small-angle deflectometric procedures with electronic tiltmeters[J]. Proceedings of SPIE, 2017, 10326: 1032604.
    [54] MING L, SHANZHI T, FUGUI Y, et al.. Optical metrology at BSRF[C]. Advanced Optical Manufacturing and Testing Technologies, 2016.
    [55] XUE J P, HUANG L, GAO B, et al. One-dimensional stitching interferometry assisted by a triple-beam interferometer[J]. Optics Express, 2017, 25(8): 9393-9405. doi: 10.1364/OE.25.009393
    [56] HUANG L, XUE J P, GAO B, et al. One-dimensional angular-measurement-based stitching interferometry[J]. Optics Express, 2018, 26(8): 9882-9892. doi: 10.1364/OE.26.009882
    [57] HUANG L, IDIR M, ZUO CH, et al. Two-dimensional stitching interferometry based on tilt measurement[J]. Optics Express, 2018, 26(18): 23278-23286. doi: 10.1364/OE.26.023278
    [58] 陈善勇. 非球面子孔径拼接干涉测量的几何方法研究[D]. 长沙: 国防科学技术大学, 2006.

    CHEN SH Y. Geometrical approach to subaperture stitching interferometry for aspheric surface[D]. Changsha: National University of Defense Technology, 2006. (in Chinese)
    [59] 侯溪, 伍凡, 杨力, 等. 环形子孔径拼接检测大口径非球面镜的规划模型及分析[J]. 光学 精密工程,2006,14(2):207-212.

    HOU X, WU F, YANG L, et al. Layout model and analysis of annular subaperture stitching technique for testing large aspheric mirror[J]. Optics and Precision Engineering, 2006, 14(2): 207-212. (in Chinese)
    [60] 王孝坤, 王丽辉, 邓伟杰, 等. 用非零位补偿法检测大口径非球面反射镜[J]. 光学 精密工程,2011,19(3):520-528. doi: 10.3788/OPE.20111903.0520

    WANG X K, WANG L H, DENG W J, et al. Measurement of large aspheric mirrors by non-null testing[J]. Optics and Precision Engineering, 2011, 19(3): 520-528. (in Chinese) doi: 10.3788/OPE.20111903.0520
    [61] 李长春, 程国民, 曹永刚. 自动调焦系统速度评估与仿真[J]. 液晶与显示,2019,34(5):515-520. doi: 10.3788/YJYXS20193405.0515

    LI CH CH, CHENG G M, CAO Y G. Evaluation and simulation of auto-focus system speed[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(5): 515-520. (in Chinese) doi: 10.3788/YJYXS20193405.0515
    [62] ZHAI D D, CHEN SH Y, PENG X Q, et al. Absolute profile test by multi-sensor scanning system with relative angle measurement[J]. Measurement Science and Technology, 2018, 29(11): 115205. doi: 10.1088/1361-6501/aade0d
    [63] SHI Y N, XU X D, HUANG Q SH, et al. Development of relative angle determinable stitching interferometry for high-accuracy x-ray focusing mirrors[J]. Proceedings of SPIE, 2017, 10385: 103850M.
    [64] FREISCHLAD K R. Absolute Interferometric testing based on reconstruction of rotational shear[J]. Applied Optics, 2001, 40(10): 1637-1648. doi: 10.1364/AO.40.001637
    [65] 张敏, 隋永新, 杨怀江. 用于子孔径拼接干涉系统的机械误差补偿算法[J]. 光学 精密工程,2015,23(4):934-940. doi: 10.3788/OPE.20152304.0934

    ZHANG M, SUI Y X, YANG H J. Mechanical error compensation algorithm for subaperture stitching interferometr[J]. Optics and Precision Engineering, 2015, 23(4): 934-940. (in Chinese) doi: 10.3788/OPE.20152304.0934
    [66] MURPHY P, FORBES G, FLEIG J, et al. Stitching interferometry: a flexible solution for surface metrology[J]. Optics and Photonics News, 2003, 14(5): 38-43. doi: 10.1364/OPN.14.5.000038
    [67] NICOLAS J, NG M L, PEDREIRA P, et al. Completeness condition for unambiguous profile reconstruction by sub-aperture stitching[J]. Optics Express, 2018, 26(21): 27212-27220. doi: 10.1364/OE.26.027212
    [68] ASSOUFID L, BRAY M, SHU D M. Development of a linear stitching interferometric system for evaluation of very large X-ray synchrotron radiation substrates and mirrors[J]. AIP Conference Proceedings, 2004, 705(1): 851-854.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  3828
  • HTML全文浏览量:  1207
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-04
  • 修回日期:  2020-01-13
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回
    Baidu
    map