留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型过渡金属硫化物在超快 中的应用

孙俊杰,陈飞,何洋,丛春晓,曲家沂,季艳慧,鲍赫

downloadPDF
孙俊杰, 陈飞, 何洋, 丛春晓, 曲家沂, 季艳慧, 鲍赫. 新型过渡金属硫化物在超快 中的应用[J]. , 2020, 13(4): 647-659. doi: 10.37188/CO.2019-0241
引用本文: 孙俊杰, 陈飞, 何洋, 丛春晓, 曲家沂, 季艳慧, 鲍赫. 新型过渡金属硫化物在超快 中的应用[J]. , 2020, 13(4): 647-659.doi:10.37188/CO.2019-0241
SUN Jun-jie, CHEN Fei, HE Yang, CONG Chun-xiao, QU Jia-yi, JI Yan-hui, BAO He. Application of emerging transition metal dichalcogenides in ultrafast lasers[J]. Chinese Optics, 2020, 13(4): 647-659. doi: 10.37188/CO.2019-0241
Citation: SUN Jun-jie, CHEN Fei, HE Yang, CONG Chun-xiao, QU Jia-yi, JI Yan-hui, BAO He. Application of emerging transition metal dichalcogenides in ultrafast lasers[J].Chinese Optics, 2020, 13(4): 647-659.doi:10.37188/CO.2019-0241

新型过渡金属硫化物在超快 中的应用

doi:10.37188/CO.2019-0241
基金项目:国家重点研发计划资助项目(No.2016YFB0500100;No.2018YFE0203203);国家自然科学基金面上项目(No. 61975203);中科院青年创新促进会(No. 2017259);民用航天预研项目(No. D040101)
详细信息
    作者简介:

    孙俊杰(1994—),女,吉林长春人,硕士,研究实习员,2015年于武汉大学获得学士学位,2017年于国防科技大学获得硕士学位,主要从事新型 技术方面的研究。E-mail:15143115236@163.com

    陈 飞(1982—),男,河南南阳人,博士,研究员,博士生导师,2005年于长春理工大学获得学士学位,2007年于哈尔滨工业大学获得硕士学位,2011年于哈尔滨工业大学获得博士学位,主要从事 技术及应用方面的研究。E-mail:feichenny@126.com

  • 中图分类号:TN248

Application of emerging transition metal dichalcogenides in ultrafast lasers

Funds:Supported by National Key R&D Program of China (No. 2016YFB0500100; No. 2018YFE0203203); National Natural Science Foundation of China (No. 61975203); Youth Innovation Promotion Association of CAS (No. 2017259); Civil Aerospace Pre-research Project (No. D040101)
More Information
  • 摘要:超快 技术是目前 乃至物理学和信息科学领域最活跃的研究前沿之一,在工业加工、生物医学和 雷达等领域具有广泛应用。二维材料具有独特的物理结构及优异的光电特性,作为可饱和吸收体应用于超快 器时,具备工作波段宽、调制深度可控和恢复时间快等优势。其中,过渡金属硫化物因具有带隙连续可调等特点,已成为二维材料研究领域的重点。本文从过渡金属硫化物的特性出发,介绍了可饱和吸收器件的制作方法,综述了基于新型过渡金属硫化物的超快 器的研究进展,并对其发展趋势进行了展望。

  • 图 1典型TMD图像。(a)光学图像;(b)扫描电镜图像;(c)原子力显微镜图像;(d、e)低倍、高倍透射电镜图像[40]

    Figure 1.Typical images of TMD. (a) Optical image. (b) SEM image. (c) AFM image. (d, e) Low- and high-magnification TEM images

    图 2TMD可饱和吸收体转移示意图

    Figure 2.Schematic diagram of transfer for TMD saturable absorber

    图 3基于ReS2可饱和吸收体的固体 器装置图

    Figure 3.Solid-state laser setup based on ReS2saturable absorber

    图 4基于ReS2可饱和吸收体的光纤 器装置示意图

    Figure 4.Schematic of fiber laser setup based on ReS2saturable absorber

    表 1基于新型TMD可饱和吸收体的超快固体 器

    Table 1.Ultrafast solid-state lasers with emerging TMD saturable absorbers

    TMD 饱和能量 调制深度 调制方式 增益介质 中心波长 重复频率 脉冲宽度 单脉冲能量/平均功率 参考
    文献
    ReS2 22.6 μJ/cm2 9.7% 调Q Er:YSGG 2.8 μm 126 kHz 324 ns 104 mW [69]
    58.2 μJ/cm221.5 μJ/cm22.7 μJ/cm2 3%
    5.2%
    2.9%
    调Q/锁模 Pr:YLF、
    Nd:YAG、
    Tm:YAP
    调Q:0.64 μm、1.064 μm、1.991 μm,锁模:
    1.06 μm
    调Q:520 kHz、644 kHz、67.7 kHz,锁模:
    50.7 MHz
    调Q:160 ns、139 ns、415 ns,锁模:323 fs 调Q:0.625 W、1.34 W、8.72 W,锁模:350 mW
    11.89 GW/cm2 48% 调Q Nd:YAG 0.95 μm/
    1.06 μm
    165 kHz 834 ns 81 mW [70]
    23.5 μJ/cm2 10.2% 调Q Ho,Pr:LiLuF4 2.95 μm 91.5 kHz 676 ns 1.13 μJ [44]
    15.6 μJ/cm2 15% 调Q Nd:YAG 1.3 μm 214 kHz 403 ns 0.42 μJ [71]
    PtSe2 17.1 μJ/cm2 12.6% 锁模 Nd:LuVO4 1066 nm 61.3 MHz 15.8 ps 180 mW [72]
    3.2 μJ/cm2 6.6% 调Q Tm:YAP 1 987 nm 58 kHz 244 ns 24.3 μJ [73]
    0.47 GW/cm2 1.9% 调Q锁模 Nd:YAG 1064 nm 8.8 GHz 27 ps 127 mW [74]
    ReSe2 调Q Tm:YLF/Tm:Y2O3 1 900 nm/
    2050 nm
    54 kHz/
    106 kHz
    527.9 ns/
    727 ns
    862 mW/
    1.04 W
    [75]
    12.8 GW/cm2 2.9% 调Q Nd:Y3Al5O12 1.06 μm 274 MHz 1.08 μs 2.5 μJ [76]
    14.5 μJ/cm2 7.5% 调Q Er:YAP 2.73 μm/
    2.8 μm
    244.6 kHz 202.8 ns 526 mW [77]
    12.8 GW/cm2 2.9% 锁模 固体波导 1064 nm 6.5 GHz 29 ps 250 mW [78]
    6.37 MW/cm2 1.89% 调Q Nd:YVO4 1064.4 nm 84.16 kHz 682 ns 125 mW [79]
    4.3 μJ/cm2 7.3% 调Q Tm:YAP 2 μm 89.4 kHz 925.8 ns 17.6 μJ [46]
    MoTe2 0.14 mJ/cm2 22% 调Q Ho,Pr:LiLuF4 2.95 μm 76.46 kHz 670 ns 0.95 μJ [80]
    1.71 MW/cm2 调Q Yb:LaCa4O(BO3)3 1.03~1.04 μm 357 kHz 103 ns 6.6 μJ [81]
    18 MW/cm2 4% 调Q Tm:CaYAlO4 1 929 nm 70.9 kHz 0.69 μs 10.58 μJ [82]
    6.87 mJ/cm2 1.3% 调Q Er:YAG 1645 nm 41.59 kHz 1.048 μs 27.4 μJ [83]
    2.26 μJ/cm2 6.0% 调Q Tm:YAP 2 μm 144 kHz 380 ns 8.4 μJ [84]
    1.71 MW/cm2 0.9% 调Q Yb:YCOB 1.03 μm 704 kHz 52 ns 2.25 μJ [85]
    1.71 MW/cm2 0.9% 调Q Yb:KLu(WO4)2 1030.6 nm 2.18 MHz 36 ns 1.3 μJ [86]
    WTe2 5.1 μJ/cm2 7.2% 调Q Tm:YAP 1 938 nm 78 kHz 368 ns 4.8 μJ [87]
    1.97 mJ/cm2 20.9% 调Q Ho,Pr:LiLuF4 2 954.7 nm 92 kHz 366 ns 1.4 μJ [88]
    TiS2 3.37 mJ/cm2 8% 调Q Er:YAG 1645 nm 38 kHz 1.2 μs 37.4 μJ [89]
    下载: 导出CSV

    表 2基于新型TMD可饱和吸收体的超快光纤 器

    Table 2.Ultrafast fiber lasers with emerging TMD saturable absorbers

    TMD 饱和能量 调制深度 调制方式 光纤掺杂 中心波长 重复频率 脉冲宽度 单脉冲能量/平均功率 参考
    文献
    ReS2 27 μJ/cm2 1% 锁模 Er 1564 nm 3.43 MHz 1.25 ps [91]
    74 MW /cm2 0.12% 调Q/锁模 Er 1558.6 nm 12.6~19 kHz/
    5.48 MHz
    23~5.49 μs/1.6 ps 22~62.8 μJ [92]
    锁模 Er 1.5 μm 1.896 MHz 12 mW [93]
    8.4 MW/cm2 44% 调Q Yb 1047 nm 134 kHz 1.56 μs 13.02 nJ [94]
    27.5 μJ/cm2 6.9% 锁模 Er 1573.6 nm/
    1591.1 nm/
    1592.6 nm
    13.39 MHz [95]
    PtSe2 0.346 GW/cm2 26% 锁模 Yb 1064.47 nm 4.08 MHz 470 ps 2.31 nJ [96]
    9.48 MW/cm2 6.9% 锁模 Er 1550 nm 8.24 MHz 861 fs 78.52 nJ [45]
    0.34~1.23 GW/cm2 1.11%~4.9% 调Q/锁模 Er 1560 nm 锁模:23.3 MHz 锁模:1.02 ps 调Q:143.2 nJ
    锁模:0.53 nJ
    [97]
    ReSe2 调Q Yb 1.06 μm 17.89~39.86 kHz 2.27 μs 30.4 nJ [98]
    3.9% 锁模 Er 1560 nm 14.97 MHz 862 fs 0.5 mW [99]
    7% 调Q Er 1566 nm 16.64 kHz 4.98 μs 36 nJ [100]
    MoTe2 3.46 MW/cm2 48.85% 锁模 Er 1559 nm 1.8 MHz 2.46 ps 0.11 mW [101]
    0.969 MW/cm2 26.97% 锁模 Er 1561 nm 96.323 MHz 111.9 fs 23.4 mW [102]
    26.45 MW/cm2 17.47% 调Q Er 1559 nm 148~228 kHz 677 ns 109 nJ [103]
    8.3 MW /cm2 5.7% 锁模 Tm 1 930 nm 14.353 MHz 952 fs 2.56 nJ [47]
    9.6 MW/cm2@
    1.5 μm、12.3 MW/cm2@2 μm
    25.5%@1.5 μm、22.1%@
    2 μm
    锁模 Er/Tm 1.5 μm/2 μm 25.601 MHz/
    15.37 MHz
    229 fs/1.3 ps 2.14 nJ/13.8 nJ [104]
    WTe2 7.6 MW/cm2 31% 锁模 Tm 1915.5 nm 18.72 MHz 1.25 ps 39.9 mW [48]
    2.18% 调Q Yb 1044 nm 19~79 kHz 1 μs 28.3 nJ [105]
    0.515 MW/cm2 31.06% 调Q Er 1531 nm 144.7~240 kHz 583 ns 58.625 nJ [106]
    TiS2 8.3% 锁模/调Q Er 1563.3 nm/
    1560.2 nm
    22.7 MHz/
    33.387 kHz
    1.25 ps/4.01 μs 25.3 pJ/9.5 nJ [107]
    772.2 GW /cm2 锁模 Er 1550 nm 5.7 MHz 618 fs 0.28~1.2 mW [49]
    下载: 导出CSV
  • [1] SIBBETT W, LAGATSKY A A, BROWN C T A. The development and application of femtosecond laser systems[J].Optics Express, 2012, 20(7): 6989-7001.doi:10.1364/OE.20.006989
    [2] YE J. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J].Optics Letters, 2004, 29(10): 1153-1155.doi:10.1364/OL.29.001153
    [3] 岱钦, 毛有明, 吴凯旋, 等. 脉冲 测距中高速精密时间间隔测量研究[J]. 液晶与显示,2015,30(1):83-88.doi:10.3788/YJYXS20153001.0083

    DAI Q, MAO Y M, WU K X,et al. High speed and high precision time-interval measurement system in pulsed laser ranging[J].Chinese Journal of Liquid Crystals and Displays, 2015, 30(1): 83-88. (in Chinese)doi:10.3788/YJYXS20153001.0083
    [4] 高慧, 赵佳宇, 刘伟伟. 超快 成丝现象的多丝控制[J]. 光学 精密工程,2013,21(3):698-607.

    GAO H, ZHAO J Y, LIU W W. Control of multiple filamentation induced by ultrafast laser pulse[J].Optics and Precision Engineering, 2013, 21(3): 698-607. (in Chinese)
    [5] TRÄGER F.Handbook of Lasers and Optics[M]. 2nd ed. New York: Springer, 2012.
    [6] 姜可, 谢冀江, 杨贵龙, 等. GaSe晶体的双光子吸收对太赫兹输出的影响[J]. 发光学报,2015,36(3):361-365.doi:10.3788/fgxb20153603.0361

    JIANG K, XIE J J, YANG G L,et al. Two-photon absorption attenuated THz generation in GaSe[J].Chinese Journal of Luminescence, 2015, 36(3): 361-365. (in Chinese)doi:10.3788/fgxb20153603.0361
    [7] TANTER M, TOUBOUL D, GENNISSON J L,et al. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging[J].IEEE Transactions on Medical Imaging, 2009, 28(12): 1881-1893.doi:10.1109/TMI.2009.2021471
    [8] CHOU S Y, KEIMEL C, GU J. Ultrafast and direct imprint of nanostructures in silicon[J].Nature, 2002, 417(6891): 835-837.doi:10.1038/nature00792
    [9] KELLER U. Recent developments in compact ultrafast lasers[J].Nature, 2003, 424(6950): 831-838.doi:10.1038/nature01938
    [10] 李景照, 陈振强, 朱思祁. 基于Yb: YAG/Cr4+: YAG/YAG键合晶体的被动调Q 器[J]. 光学 精密工程,2018,26(1):55-61.doi:10.3788/OPE.20182601.0055

    LI J ZH, CHEN ZH Q, ZHU S Q. PassivelyQ-switched laser with a Yb: YAG/Cr4+: YAG/YAG composite crystal[J].Optics and Precision Engineering, 2018, 26(1): 55-61. (in Chinese)doi:10.3788/OPE.20182601.0055
    [11] 程秀凤, 陈丽娟, 韩树娟, 等. LD端面泵浦Nd: LiGd(MoO4)2晶体的主动调Q脉冲 特性[J]. 光学 精密工程,2013,21(4):836-840.

    CHENG X F, CHEN L J, HAN SH J,et al. Actively Q-switched pulse laser from LD end-pumped Nd: LiGd(MoO4)2crystals[J].Optics and Precision Engineering, 2013, 21(4): 836-840. (in Chinese)
    [12] 王加贤, 庄鑫巍. 基于半导体可饱和吸收镜实现闪光灯抽运Nd: YAG 器的被动调Q与锁模[J]. 光学 精密工程,2006,14(4):584-588.

    WANG J X, ZHUANG X W. PassiveQ-switching and mode-locking in a flashlamp-pumped Nd: YAG laser with semiconductor saturable absorption mirror[J].Optics and Precision Engineering, 2006, 14(4): 584-588. (in Chinese)
    [13] 余锦, 刘伟仁. 1.0 μm掺钕介质全固化调Q脉冲 技术[J]. 光学 精密工程,2000,8(2):297-302.

    YU J, LIU W R. All-solid-state Q-switched lasers with Nd3+-doped crystals oscillating at 1.0 μm[J].Optics and Precision Engineering, 2000, 8(2): 297-302. (in Chinese)
    [14] 王蓟, 王国政, 刘洋, 等. 全光纤声光调Q铒镱共掺双包层光纤 器[J]. 发光学报,2008,29(6):1018-1022.

    WANG J, WANG G ZH, LIU Y,et al. All-fiber acousto-optic Q-switched Er3+/Yb3+co-doped double-cladding fiber lasers[J].Chinese Journal of Luminescence, 2008, 29(6): 1018-1022. (in Chinese)
    [15] 王国立, 郭亨群, 苏培林, 等. nc-Si/SiNx超晶格薄膜实现Nd: YAG 器调Q和锁模[J]. 发光学报,2008,29(5):905-909.

    WANG G L, GUO H Q, SU P L,et al. Passive Q-switching and mode locking of pulsed Nd: YAG laser with nc-Si/SiNxmultilayer[J].Chinese Journal of Luminescence, 2008, 29(5): 905-909. (in Chinese)
    [16] 张伶莉, 孙秀冬, 刘永军, 等. 具有外部谐振腔的胆甾相液晶 器的研究[J]. 液晶与显示,2013,28(5):679-682.doi:10.3788/YJYXS20132805.0679

    ZHANG L L, SUN X D, LIU Y J,et al. Cholesteric liquid crystals laser with external cavity[J].Chinese Journal of Liquid Crystals and Displays, 2013, 28(5): 679-682. (in Chinese)doi:10.3788/YJYXS20132805.0679
    [17] 苏晶, 刘玉荣, 莫昌文, 等. ZnO基薄膜晶体管有源层制备技术的研究进展[J]. 液晶与显示,2013,28(3):315-322.doi:10.3788/YJYXS20132803.0315

    SU J, LIU Y R, MO CH W,et al. Research development on preparation technologies of active layer preparation of ZnO-based thin film[J].Chinese Journal of Liquid Crystals and Displays, 2013, 28(3): 315-322. (in Chinese)doi:10.3788/YJYXS20132803.0315
    [18] ZIRNGIBL M, STULZ L W, STONE J,et al. 1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser[J].Electronics Letters, 1991, 27(19): 1734-1735.doi:10.1049/el:19911079
    [19] WEI CH, SHI H X, LUO H Y,et al. 34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser[J].Optics Express, 2017, 25(16): 19170-19178.doi:10.1364/OE.25.019170
    [20] TANG P H, QIN ZH P, LIU J,et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J].Optics Letters, 2015, 40(21): 4855-4858.doi:10.1364/OL.40.004855
    [21] NOVOSELOV K S, JIANG D, SCHEDIN F,et al. Two-dimensional atomic crystals[J].Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453.doi:10.1073/pnas.0502848102
    [22] WANG Q H, KALANTAR-ZADEH K, KIS A,et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J].Nature Nanotechnology, 2012, 7(11): 699-712.doi:10.1038/nnano.2012.193
    [23] CHEN Y, JIANG G B, CHEN SH Q,et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J].Optics Express, 2015, 23(10): 12823-12833.doi:10.1364/OE.23.012823
    [24] JIANG X T, LIU SH X, LIANG W Y,et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH)[J].Laser&Photonics Review, 2018, 12(2): 1700229.
    [25] WANG SH X, YU H H, ZHANG H J,et al. Broadband few-layer MoS2saturable absorbers[J].Advanced Materials, 2014, 26(21): 3538-3544.doi:10.1002/adma.201306322
    [26] WANG M X, ZHANG F, WANG ZH P,et al. Passively Q-switched Nd3+solid-state lasers with antimonene as saturable absorber[J].Optics Express, 2018, 26(4): 4085-4095.doi:10.1364/OE.26.004085
    [27] GUO J, HUANG D ZH, ZHANG Y,et al.. 2D GeP as a novel broadband nonlinear optical material for ultrafast photonics[J].Laser&Photonics Reviews, 2019, 13: 1900123.
    [28] MOHANRAJ J, VELMURUGAN V, SIVABALAN S. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology[J].Optical Materials, 2016, 60: 601-617.doi:10.1016/j.optmat.2016.09.007
    [29] TIU Z C, OOI S I, GUO J,et al. Review: application of transition metal dichalcogenide in pulsed fiber laser system[J].Materials Research Express, 2019, 6(8): 082004.doi:10.1088/2053-1591/ab2257
    [30] LI H, LU G, WANG Y L,et al. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2[J].Small, 2013, 9(11): 1974-1981.doi:10.1002/smll.201202919
    [31] COLEMAN J N, LOTYA M, O’NEILL A,et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J].Science, 2011, 331(6017): 568-571.doi:10.1126/science.1194975
    [32] MAK K F, HE K L, SHAN J,et al. Control of valley polarization in monolayer MoS2by optical helicity[J].Nature Nanotechnology, 2012, 7(8): 494-498.doi:10.1038/nnano.2012.96
    [33] BERTOLAZZI S, BRIVIO J, KIS A. Stretching and breaking of ultrathin MoS2[J].ACS Nano, 2011, 5(12): 9703-9709.doi:10.1021/nn203879f
    [34] LEE Y H, ZHANG X Q, ZHANG W J,et al. Synthesis of large-area MoS2atomic layers with chemical vapor deposition[J].Advanced Materials, 2012, 24(17): 2320-2325.doi:10.1002/adma.201104798
    [35] NAJMAEI S, LIU ZH, ZHOU W,et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J].Nature Materials, 2013, 12(8): 754-759.doi:10.1038/nmat3673
    [36] REN L, QI X, LIU Y D,et al. Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route[J].Journal of Materials Chemistry, 2012, 22(11): 4921-4926.doi:10.1039/c2jm15973b
    [37] PRADO G, FOURNÈS L, DELMAS C. On the LixNi0.70Fe0.15Co0.15O2system: an X-ray diffraction and mössbauer study[J].Journal of Solid State Chemistry, 2001, 159(1): 103-112.doi:10.1006/jssc.2001.9137
    [38] RAMAKRISHNA MATTE H S S, GOMATHI A,et al. MoS2and WS2analogues of graphene[J].Angewandte Chemie International Edition, 2010, 49(24): 4059-4062.doi:10.1002/anie.201000009
    [39] FOMINSKI V Y, NEVOLIN V N, ROMANOV R I,et al. Ion-assisted deposition of MoSxfilms from laser-generated plume under pulsed electric field[J].Journal of Applied Physics, 2001, 89(2): 1449-1457.doi:10.1063/1.1330558
    [40] CONG CH X, SHANG J ZH, WU X,et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2monolayer from chemical vapor deposition[J].Advanced Optical Materials, 2014, 2(2): 131-136.doi:10.1002/adom.201300428
    [41] REICHARDT S, WIRTZ L.Raman Spectroscopy of Graphene[M]. BINDER R. Optical Properties of Graphene. Singapore: World Scientific, 2017.
    [42] DRESSELHAUS M S, JORIO A, SAITO R. Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy[J].Annual Review of Condensed Matter Physics, 2010, 1: 89-108.doi:10.1146/annurev-conmatphys-070909-103919
    [43] DRESSELHAUS M S, JORIO A, HOFMAN M,et al. Perspectives on carbon nanotubes and graphene raman spectroscopy[J].Nano Letters, 2010, 10(3): 751-758.doi:10.1021/nl904286r
    [44] ZUO CH H, CAO Y P, YANG Q,et al. PassivelyQ-switched 295-μm bulk laser based on rhenium disulfide as saturable absorber[J].IEEE Photonics Technology Letters, 2019, 31(3): 206-209.doi:10.1109/LPT.2018.2886784
    [45] HUANG B, DU L, YI Q,et al. Bulk-structured PtSe2for femtosecond fiber laser mode-locking[J].Optics Express, 2019, 27(3): 2604-2611.doi:10.1364/OE.27.002604
    [46] YAO Y P, LI X W, SONG R G,et al. The energy band structure analysis and 2 μm Q-switched laser application of layered rhenium diselenide[J].RSC Advances, 2019, 9(25): 14417-14421.doi:10.1039/C9RA02311A
    [47] WANG J T, CHEN H, JIANG Z K,et al. Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride[J].Optics Letters, 2018, 43(9): 1998-2001.doi:10.1364/OL.43.001998
    [48] WANG J T, JIANG Z K, CHEN H,et al. Magnetron-sputtering deposited WTe2for an ultrafast thulium-doped fiber laser[J].Optics Letters, 2017, 42(23): 5010-5013.doi:10.1364/OL.42.005010
    [49] TIAN X L, WEI R F, LIU M,et al. Ultrafast saturable absorption in TiS2induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser[J].Nanoscale, 2018, 10(20): 9608-9615.doi:10.1039/C8NR01573B
    [50] WU K, CHEN B H, ZHANG X Y,et al. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited)[J].Optics Communications, 2018, 406: 214-229.doi:10.1016/j.optcom.2017.02.024
    [51] TIAN Z, WU K, KONG L CH,et al. Mode-locked thulium fiber laser with MoS2[J].Laser Physics Letters, 2015, 12(6): 065104.doi:10.1088/1612-2011/12/6/065104
    [52] WEI CH, LUO H Y, ZHANG H,et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber[J].Laser Physics Letters, 2016, 13(10): 105108.doi:10.1088/1612-2011/13/10/105108
    [53] HOU J, ZHAO G, WU Y ZH,et al. Femtosecond solid-state laser based on tungsten disulfide saturable absorber[J].Optics Express, 2015, 23(21): 27292-27298.doi:10.1364/OE.23.027292
    [54] CHEN B H, ZHANG X Y, WU K,et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J].Optics Express, 2015, 23(20): 26723-26737.doi:10.1364/OE.23.026723
    [55] WU K, ZHANG X Y, WANG J,et al. WS2as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers[J].Optics Express, 2015, 23(9): 11453-11461.doi:10.1364/OE.23.011453
    [56] WU K, ZHANG X Y, WANG J,et al. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2saturable absorber[J].Optics Letters, 2015, 40(7): 1374-1377.doi:10.1364/OL.40.001374
    [57] WANG Q K, CHEN Y, MIAO L L,et al. Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer[J].Optics Express, 2015, 23(6): 7681-7693.doi:10.1364/OE.23.007681
    [58] XING CH Y, XIE ZH J, LIANG ZH M,et al. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics[J].Advanced Optical Materials, 2017, 5(24): 1700884.doi:10.1002/adom.201700884
    [59] YAN P G, LIN R Y, CHEN H,et al. Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser[J].IEEE Photonics Technology Letters, 2015, 27(3): 264-267.doi:10.1109/LPT.2014.2361915
    [60] YAN P G, LIU A J, CHEN Y SH,et al. Passively mode-locked fiber laser by a cell-type WS2nanosheets saturable absorber[J].Scientific Reports, 2015, 5(1): 12587.doi:10.1038/srep12587
    [61] WANG K P, WANG J, FAN J T,et al. Ultrafast saturable absorption of two-dimensional MoS2nanosheets[J].ACS Nano, 2013, 7(10): 9260-9267.doi:10.1021/nn403886t
    [62] XU B, CHENG Y J, WANG Y,et al. Passively Q-switched Nd: YAlO3nanosecond laser using MoS2as saturable absorber[J].Optics Express, 2014, 22(23): 28934-28940.doi:10.1364/OE.22.028934
    [63] TONGAY S, SAHIN H, KO C,et al. Monolayer behaviour in bulk ReS2due to electronic and vibrational decoupling[J].Nature Communications, 2014, 5(1): 3252.doi:10.1038/ncomms4252
    [64] CHHOWALLA M, SHIN H S, EDA G,et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J].Nature Chemistry, 2013, 5(4): 263-275.doi:10.1038/nchem.1589
    [65] XU M SH, LIANG T, SHI M M,et al. Graphene-like two-dimensional materials[J].Chemical Reviews, 2013, 113(5): 3766-3798.doi:10.1021/cr300263a
    [66] LIU E F, FU Y J, WANG Y J,et al. Integrated digital inverters based on two-dimensional anisotropic ReS2field-effect transistors[J].Nature Communications, 2015, 6(1): 6991.doi:10.1038/ncomms7991
    [67] TIAN H, CHIN M L, NAJMAEI S,et al. Optoelectronic devices based on two-dimensional transition metal dichalcogenides[J].Nano Research, 2016, 9(6): 1543-1560.doi:10.1007/s12274-016-1034-9
    [68] ZHANG E Z, JIN Y B, YUAN X,et al. ReS2-based field-effect transistors and photodetectors[J].Advanced Functional Materials, 2015, 25(26): 4076-4082.doi:10.1002/adfm.201500969
    [69] SU X C, ZHANG B T, WANG Y R,et al. Broadband rhenium disulfide optical modulator for solid-state lasers[J].Photonics Research, 2018, 6(6): 498-505.doi:10.1364/PRJ.6.000498
    [70] HAN SH, ZHOU SH SH, LIU X L,et al. Rhenium disulfide-based passively Q-switched dual-wavelength laser at 0.95 μm and 1.06 μm in Nd: YAG[J].Laser Physics Letters, 2018, 15(8): 085804.doi:10.1088/1612-202X/aac983
    [71] LIN M X, PENG Q Q, HOU W,et al. 1.3 μm Q-switched solid-state laser based on few-layer ReS2saturable absorber[J].Optics&Laser Technology, 2019, 109: 90-93.
    [72] TAO L L, HUANG X W, HE J SH,et al. Vertically standing PtSe2film: a saturable absorber for a passively mode-locked Nd: LuVO4laser[J].Photonics Research, 2018, 6(7): 750-755.doi:10.1364/PRJ.6.000750
    [73] YAN B ZH, ZHANG B T, NIE H K,et al. Bilayer platinum diselenide saturable absorber for 2.0 μm passively Q-switched bulk lasers[J].Optics Express, 2018, 26(24): 31657-31663.doi:10.1364/OE.26.031657
    [74] LI Z Q, LI R, PANG CH,et al. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2saturable absorber[J].Optics Express, 2019, 27(6): 8727-8737.doi:10.1364/OE.27.008727
    [75] WANG SH Q, HUANG H T, LIU X,et al. Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers[J].Optical Materials, 2019, 88: 630-634.doi:10.1016/j.optmat.2018.12.042
    [76] XUE Y CH, LI L, ZHANG B,et al. ReSe2passively Q-switched Nd: Y3Al5O12laser with near repetition rate limit of microsecond pulse output[J].Optics Communications, 2019, 455: 165-170.
    [77] YAO Y P, CUI N, WANG Q G,et al. Highly efficient continuous-wave and ReSe2Q-switched ~3 μm dual-wavelength Er: YAP crystal lasers[J].Optics Letters, 2019, 44(11): 2839-2842.doi:10.1364/OL.44.002839
    [78] LI Z Q, DONG N N, ZHANG Y X,et al. Invited Article: mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber[J].APL Photonics, 2018, 3(8): 080802.doi:10.1063/1.5032243
    [79] LI CH, LENG Y X, HUO J J. Diode-pumped solid-state Q-switched laser with rhenium diselenide as saturable absorber[J].Applied Sciences, 2018, 8(10): 1753.doi:10.3390/app8101753
    [80] YAN ZH Y, LI T, ZHAO SH ZH,et al. MoTe2saturable absorber for passively Q-switched Ho, Pr: LiLuF4laser at ~3 μm[J].Optics and Laser Technology, 2018, 100: 261-264.doi:10.1016/j.optlastec.2017.10.012
    [81] LI Y H, XU Y F, XU G Y,et al. Performance of an Yb: LaCa4O(BO3)3crystal laser at 1.03~1.04 μm passively Q-switched with 2D MoTe2saturable absorber[J].Infrared Physics&Technology, 2019, 99: 167-171.
    [82] ZHANG Y ZH, WANG J W, GUAN X F,et al. MoTe2-based broadband wavelength tunable eye-safe pulsed laser source at 1.9 μm[J].IEEE Photonics Technology Letters, 2018, 30(21): 1890-1893.doi:10.1109/LPT.2018.2871467
    [83] LIANG Y Y, ZHAO J, QIAO W CH,et al. Passively Q-switched Er: YAG laser at 1645 nm utilizing a multilayer molybdenum ditelluride (MoTe2) saturable absorber[J].Laser Physics Letters, 2018, 15(9): 095801.doi:10.1088/1612-202X/aacfae
    [84] YAN B ZH, ZHANG B T, NIE H K,et al. High-power passively Q-switched 2.0 μm all-solid-state laser based on a MoTe2saturable absorber[J].Optics Express, 2018, 26(14): 18505-18512.doi:10.1364/OE.26.018505
    [85] MA Y J, TIAN K, DOU X D,et al. Passive Q-switching induced by few-layer MoTe2in an Yb: YCOB microchip laser[J].Optics Express, 2018, 26(19): 25147-25155.doi:10.1364/OE.26.025147
    [86] TIAN K, LI Y H, YANG J N,et al. Passively Q-switched Yb: KLu(WO4)2laser with 2D MoTe2acting as saturable absorber[J].Applied Physics B, 2019, 125(2): 24.doi:10.1007/s00340-019-7135-x
    [87] CHEN L J, LI X, ZHANG H K,et al. PassivelyQ-switched 1.989 μm all-solid-state laser based on a WTe2saturable absorber[J].Applied Optics, 2018, 57(35): 10239-10242.doi:10.1364/AO.57.010239
    [88] YAN ZH Y, LI T, ZHAO J,et al. Tungsten ditelluride for a nanosecond Ho, Pr: LiLuF4laser at 2.95 μm[J].Laser Physics Letters, 2018, 15(4): 045801.doi:10.1088/1612-202X/aaa94b
    [89] LI G Q, WU CH, YAN ZH Y,et al. TiS2as a novel saturable absorber for a 1645 nm passivelyQ-switched laser[J].Laser Physics, 2019, 29(5): 055801.doi:10.1088/1555-6611/ab0d13
    [90] WOODWARD R I, KELLEHER E J R, HOWE R C T,et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer Molybdenum disulfide (MoS2)[J].Optics Express, 2014, 22(25): 31113-31122.doi:10.1364/OE.22.031113
    [91] CUI Y D, LU F F, LIU X M. Nonlinear saturable and polarization-induced absorption of rhenium disulfide[J].Scientific Reports, 2017, 7(1): 40080.doi:10.1038/srep40080
    [92] MAO D, CUI X Q, GAN X T,et al. Passively Q-switched and mode-locked fiber laser based on an ReS2saturable absorber[J].IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1100406.
    [93] LU F F. Passively harmonic mode-locked fiber laser based on ReS2saturable absorber[J].Modern Physics Letters B, 2017, 31(18): 1750206.doi:10.1142/S0217984917502062
    [94] ZHAO R W, LI G R, ZHANG B T,et al. Multi-wavelength bright-dark pulse pair fiber laser based on rhenium disulfide[J].Optics Express, 2018, 26(5): 5819-5826.doi:10.1364/OE.26.005819
    [95] LU B L, WEN Z R, HUANG K X,et al. Passively Q-switched Yb3+-doped fiber laser with ReS2Saturable absorber[J].IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(4): 1600104.
    [96] YUAN J, MU H R, LI L,et al. Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers[J].ACS Applied Materials&Interfaces, 2018, 10(25): 21534-21540.
    [97] ZHANG K, FENG M, REN Y Y,et al.Q-switched and mode-locked Er-doped fiber laser using PtSe2as a saturable absorber[J].Photonics Research, 2018, 6(9): 893-899.doi:10.1364/PRJ.6.000893
    [98] LI Y H, LOU Y J, HE J S,et al.Q-switched ytterbium fiber laser based on rhenium diselenide as a saturable absorber[J].Journal of Physics D:Applied Physics, 2019, 52(46): 465101.doi:10.1088/1361-6463/ab3883
    [99] LEE J, LEE K, KWON S,et al. Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker[J].Photonics Research, 2019, 7(9): 984-993.doi:10.1364/PRJ.7.000984
    [100] DU L, JIANG G B, MIAO L L,et al. Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator[J].Optical Materials Express, 2018, 8(4): 926-935.doi:10.1364/OME.8.000926
    [101] WANG G M. Wavelength-switchable passively mode-locked fiber laser with mechanically exfoliated molybdenum ditelluride on side-polished fiber[J].Optics&Laser Technology, 2017, 96: 307-312.
    [102] LIU M L, LIU W J, WEI ZH Y. MoTe2saturable absorber with high modulation depth for erbium-doped fiber laser[J].Journal of Lightwave Technology, 2019, 37(13): 3100-3105.doi:10.1109/JLT.2019.2910892
    [103] LIU M L, LIU W J, YAN P G,et al. High-power MoTe2-based passivelyQ-switched erbium-doped fiber laser[J].Chinese Optics Letters, 2018, 16(2): 020007.doi:10.3788/COL201816.020007
    [104] WANG J T, JIANG Z K, CHEN H,et al. High energy soliton pulse generation by a magnetron -sputtering- deposition -grown MoTe2saturable absorber[J].Photonics Research, 2018, 6(6): 535-541.doi:10.1364/PRJ.6.000535
    [105] KO S, LEE J, LEE J H. PassivelyQ-switched ytterbium-doped fiber laser using the evanescent field interaction with bulk-like WTe2particles[J].Chinese Optics Letters, 2018, 16(2): 020017.doi:10.3788/COL201816.020017
    [106] LIU M L, OUYANG Y Y, HOU H R,et al.Q-switched fiber laser operating at 1.5 μm based on WTe2[J].Chinese Optics Letters, 2019, 17(2): 020006.doi:10.3788/COL201917.020006
    [107] ZHU X, CHEN S, ZHANG M,et al. TiS2-based saturable absorber for ultrafast fiber lasers[J].Photonics Research, 2018, 6(10): C44-C48.doi:10.1364/PRJ.6.000C44
  • 加载中
图(4)/ 表(2)
计量
  • 文章访问数:3634
  • HTML全文浏览量:1277
  • PDF下载量:245
  • 被引次数:0
出版历程
  • 收稿日期:2019-12-17
  • 修回日期:2020-02-07
  • 刊出日期:2020-08-01

目录

    /

      返回文章
      返回
        Baidu
        map