The effects of metallic contacts on the lasing characteristics of organic thin films
doi: 10.37188/CO.2020-0007
-
摘要: 金属触点引起的光学损耗被认为是阻碍电泵浦有机金宝搏188软件怎么用 器发展的主要障碍。本文对于存在金属接触电极的有机薄膜,通过设计适当的分布反馈结构形成多通道发射和表面等离子体激元(SPs),从而实现光泵浦金宝搏188软件怎么用 。与采用无金属接触电极的有机薄膜进行对比,结果表明,本文方法可实现更好的金宝搏188软件怎么用 性能。利用本文设计的结构,在740 nm光栅结构的Ag衬底上实现了(0.026 mJ/pulse)的金宝搏188软件怎么用 发射。由于本文设计方法没有增加器件厚度,所以当光学性能得到改善时,电性能并没有降低。
-
关键词:
- 有机金宝搏188软件怎么用 /
- 表面等离子体 /
- 光栅耦合
Abstract: Optical loss caused by metallic contacts are thought to be a major obstacle to the achievement of organic laser diodes. We find that multi-channel emissions and Surface Plasmons (SPs) by designing a proper distributed feedback structure can allow successful lasing in organic thin films in the presence of contacting electrodes and even show better lasing performance when compared to metal-free cases. In this paper, a lower threshold (0.026 mJ/pulse) laser emission is achieved with the Ag metal electrode on the grating structure with a period of 740 nm. Since there is no increase in device thickness, the electrical properties are not reduced when the optical properties are improved.-
Key words:
- organic laser /
- surface plasmons /
- grating coupling
-
Figure 4. Output emission intensity integrated over all wavelengths as a function of the pump intensity for metal-free device (circles); DCJTI:PVK films with quartz substrate and Al-backed device (stars); DCJTI:PVK films with a grating period of 740 nm. The inset shows the grating coupling processes between the waveguide mode and lasing emission under the fourth Bragg condition
Figure 5. Output emission intensity integrated over all wavelengths as a function of the pump intensity for metal-free device (rectangles); DCJTI:PVK films with quartz substrate, Al-backed device (triangles); DCJTI:PVK films and Ag-backed device (stars); DCJTI:PVK films with a grating period of 740 nm. The inset shows the exiting and coupling processes between the lasing light and the SPs mode
Table 1. ASE characteristics of DCJTI:PVK films with quartz substrate and lasing characteristics of distributed feedback lasers (gain material DCJTI:PVK) with grating period of 400 nm and 740 nm.
Metal layer Period /nm Threshold /(mJ·pulse−1) Wavelength /nm FWHM /nm (none) (flat substrate) 0.057 635 12.4 Al (flat substrate) 0.37 632 11.8 Ag (flat substrate) 0.41 632 12.1 (none) 400 0.03 641 0.13 Al 400 0.13 637 0.15 Ag 400 0.16 640 0.23 (none) 740 0.06 613 0.32 Al 740 0.067 612 0.25 Ag 740 0.026 615 0.37 -
[1] QIAN SH X, SNOW J B, TZENG H M, et al. Lasing droplets: highlighting the liquid-air interface by laser emission[J]. Science, 1986, 231(4737): 486-488. doi: 10.1126/science.231.4737.486 [2] KALLINGER C, HILMER M, HAUGENEDER A, et al. A flexible conjugated polymer laser[J]. Advanced Materials, 1998, 10(12): 920-923. doi: 10.1002/(SICI)1521-4095(199808)10:12<920::AID-ADMA920>3.0.CO;2-7 [3] FROLOV S V, VARDENY Z V, YOSHINO K. Cooperative and stimulated emission in poly (p-phenylene-vinylene) thin films and solutions[J]. Physical Review B, 1998, 57(15): 9141-9147. doi: 10.1103/PhysRevB.57.9141 [4] ZHANG L, YANG Y, GAO J CH, et al. Study on Amplified Spontaneous Emission Properties of En BOD material[J]. Chinese Journal of Luminescence, 2015, 36(6): 661-665. (in Chinese) doi: 10.3788/fgxb20153606.0661 [5] GROSSMANN T, WIENHOLD T, BOG U, et al. Polymeric photonic molecule super-mode lasers on silicon[J]. Light:Science &Applications, 2013, 2(5): e82. [6] ZHANG L, LI Y T, LIN J, et al. Microcavity lasing at 650 nm from Alq∶DCJTI film under optical pumping[J]. Chinese Journal of Luminescence, 2015, 36(9): 1059-1063. (in Chinese) doi: 10.3788/fgxb20153609.1059 [7] CHEN SH M, LI K F, LI G X, et al. Gigantic electric-field-induced second harmonic generation from an organic conjugated polymer enhanced by a band-edge effect[J]. Light:Science &Applications, 2019, 8(1): 17. [8] FU D X, ZHENG L N, LIU J H, et al. Quantitative analysis of silver nanoparticles in single cell by laser ablation inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1390-1394. (in Chinese) [9] SUN L X, WANG W, TIAN X Y, et al. Progress in research and application of micro-laser-induced breakdown spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2018, 46(10): 1518-1527. (in Chinese) doi: 10.11895/j.issn.0253-3820.181150 [10] LETOKHOV V S. Laser biology and medicine[J]. Nature, 1985, 316(6026): 325-330. doi: 10.1038/316325a0 [11] MOUROU G A, BARTY C P, PERRY M D. Ultrahigh-intensity laser: physics of the extreme on a tabletop[R]. Washington, DC: Lawrence Livermore National Lab, 1997. [12] BRANCALEON L, MOSELEY H. Laser and non-laser light sources for photodynamic therapy[J]. Lasers in Medical Science, 2002, 17(3): 173-186. doi: 10.1007/s101030200027 [13] RAO G F, HUANG L, LIU M H, et al. Discrimination of microbe species by laser induced breakdown spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1122-1128. (in Chinese) doi: 10.11895/j.issn.0253-3820.171448 [14] YU J J, LIU P, ZENG ZH, et al. Development and characterization of a linear matrix-assisted laser desorption ionization mass spectrometer[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 463-470. (in Chinese) doi: 10.1016/S1872-2040(17)61077-6 [15] DENG W CH, HAN G B, LI Y F, et al. Distinction of cells infected with respiratory syncytial virus by matrix assisted laser desorption/ionization mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(2): 165-169. (in Chinese) doi: 10.11895/j.issn.0253-3820.171011 [16] KOZLOV V G, BULOVIĆ V, BURROWS P E, et al. Laser action in organic semiconductor waveguide and double-heterostructure devices[J]. Nature, 1997, 389(6649): 362-364. doi: 10.1038/38693 [17] LI Y T, TIAN Y B, LIU X Y. Key techniques in electrically pumped organic semiconductor laser[J]. Chinese Journal of Luminescence, 2009, 30(3): 414-416. (in Chinese) [18] ANDREW P, TURNBULL G A, SAMUEL I D W, et al. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser[J]. Applied Physics Letters, 2002, 81(6): 954-956. doi: 10.1063/1.1496497 [19] REUFER M, RIECHEL S, LUPTON J M, et al. Low-threshold polymeric distributed feedback lasers with metallic contacts[J]. Applied Physics Letters, 2004, 84(17): 3262-3264. doi: 10.1063/1.1712029 [20] GIFFORD D K, HALL D G. Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling[J]. Applied Physics Letters, 2002, 81(23): 4315-4317. doi: 10.1063/1.1525882 [21] FENG J, OKAMOTO T, KAWATA S. Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling[J]. Optics Letters, 2005, 30(17): 2302-2304. doi: 10.1364/OL.30.002302 [22] BRUECK S R J, DIADIUK V, JONES T, et al. Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves[J]. Applied Physics Letters, 1985, 46(10): 915-917. doi: 10.1063/1.95819 [23] JIANG L Y, YIN T T, DUBROVKIN A M, et al. In-plane coherent control of plasmon resonances for plasmonic switching and encoding[J]. Light:Science &Applications, 2019, 8(1): 21.