留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电精跟踪系统的改进差分进化算法研究

董全睿 陈涛 高世杰 刘永凯 张建强 吴昊

董全睿, 陈涛, 高世杰, 刘永凯, 张建强, 吴昊. 光电精跟踪系统的改进差分进化算法研究[J]. 188bet网站真的吗 , 2020, 13(6): 1314-1323. doi: 10.37188/CO.2020-0021
引用本文: 董全睿, 陈涛, 高世杰, 刘永凯, 张建强, 吴昊. 光电精跟踪系统的改进差分进化算法研究[J]. 188bet网站真的吗 , 2020, 13(6): 1314-1323. doi: 10.37188/CO.2020-0021
DONG Quan-rui, CHEN Tao, GAO Shi-jie, LIU Yong-kai, ZHANG Jian-qiang, WU Hao. Identification of opto-electronic fine tracking systems based on an improved differential evolution algorithm[J]. Chinese Optics, 2020, 13(6): 1314-1323. doi: 10.37188/CO.2020-0021
Citation: DONG Quan-rui, CHEN Tao, GAO Shi-jie, LIU Yong-kai, ZHANG Jian-qiang, WU Hao. Identification of opto-electronic fine tracking systems based on an improved differential evolution algorithm[J]. Chinese Optics, 2020, 13(6): 1314-1323. doi: 10.37188/CO.2020-0021

光电精跟踪系统的改进差分进化算法研究

基金项目: 国家重点研发计划资助项目(No. 2016YFB0500100);长光复旦联合基金(No. Y8O732E);民用航天预研项目(No. D04010)
详细信息
    作者简介:

    董全睿(1992—),男,吉林长春人,博士研究生,2014年于吉林大学获得学士学位,主要从事光电精密跟踪测量技术方面的研究。E-mail:dongquanrui0431@126.com

    陈 涛(1965—),男,内蒙古赤峰人,工学博士,研究员,博士生导师,2007 年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光电跟踪伺服控制技术与光电测控系统总体技术研究。E-mail:chent@ciomp.ac.cn

  • 中图分类号: TP13

Identification of opto-electronic fine tracking systems based on an improved differential evolution algorithm

Funds: Supported by National Key R & D Program of China (No. 2016YFB0500100); Fudan University-CIOMP Joint Fund (No. Y8O732E); Civil Aerospace Pre-research Project (No. D04010)
More Information
  • 摘要: 针对金宝搏188软件怎么用 通信精跟踪系统,提出一种基于改进差分进化算法的辨识方法。首先,介绍了标准差分进化算法的基本原理和算法流程,基于此提出一种改进的差分进化算法,并对算法中的参数进行优化;其次,通过扫频信号激励精跟踪系统分析被控对象的动态特性,同时采集CCD相机的位置反馈信息;最后,根据实验数据采用差分进化算法对系统进行辨识,获得精跟踪系统的控制模型。实验结果表明:采用改进差分进化算法后,辨识方法的收敛速度更快,辨识结果准确,该方法在光电跟踪领域有一定工程价值。

     

  • 图 1  差分进化算法流程图

    Figure 1.  Flowchart of differential evolution algorithm

    图 2  4种算法在6个Benchmark函数上的适应度收敛曲线

    Figure 2.  Fitness convergence curves of four different algorithms applied to 6 Benchmark functions

    图 3  实验平台示意图

    Figure 3.  Schematic diagram of experimental platform

    图 4  快速反射镜结构简图

    Figure 4.  Simplified structure of FSM

    图 5  精跟踪系统开环输入-输出响应图

    Figure 5.  Response graph of input-output for the fine tracking system in open loop

    图 6  标准差分算法和自适应差分算法辨识结果对比

    Figure 6.  Comparison of identification results by using the traditional algorithm and adaptive difference algorithm

    图 7  差分进化算法辨识输出与系统实际输出结果比较

    Figure 7.  Identification output of the differential evolution algorithm compared with the actual output of the system

    图 8  辨识模型的频率特性比较曲线

    Figure 8.  Frequency characteristic comparison curve of the identification model

    表  1  6个Benchmark函数

    Table  1.   Six kinds of Benchmark test functions

    函数公式最优解取值范围
    Sphere$\displaystyle\sum\limits_{i = 1}^D { {x_i}^2}$0[−100, 100]
    Quadric${\displaystyle\sum\limits_{i = 1}^D {\left( {\sum\limits_{j = 1}^i { {x_i} } } \right)} ^2}$0[−100, 100]
    Rosenbrock$\displaystyle\sum\limits_{i = 1}^D {\left[ {100{ {\left( {x{}_{i + 1} - {x_i}^2} \right)}^2} + { {\left( {1 - {x_i} } \right)}^2} } \right]}$0[−30, 30]
    Rastrigin$\displaystyle\sum\limits_{i = 1}^D {\left[ { {x_i}^2 - 10\cos \left( {2{\text{π}} {x_i} } \right) + 10} \right]}$0[−5.12, 5.12]
    Griewank$\dfrac{1}{ {4\;000} }\displaystyle\sum\limits_{i = 1}^D { {x_i}^2 - \mathop \prod \limits_{i = 1}^D } \cos \left( {\frac{ { {x_i} } }{ {\sqrt i } } } \right) + 1$0[−600, 600]
    Ackley$- 20\exp \left( { - 0.2\sqrt {\dfrac{1}{n}\displaystyle\sum\limits_{i = 1}^D { {x_i}^2} } } \right) - \exp \left( {\dfrac{1}{D}\displaystyle\sum\limits_{i = 1}^D {\cos \left( {2{\text{π}} {x_i} } \right) + 20 + e} } \right)$0[−32, 32]
    下载: 导出CSV

    表  2  算法精度测试结果

    Table  2.   Accuracy of the algorithm’s test results

    函数PSOGADEADE
    MeanStdMeanStdMeanStdMeanStd
    Sphere48.925.70.250.134.82e-228.78e-233.9e-405.9e-41
    Quadric3.56e+63.05e+67.7e+43.23e+47.3e+48.62e+35.31e-33.42e-3
    Rosenbrock88.755.63.36e+31.32e+378.336.71.65e-41.23e-4
    Rastrigin9.756.968.653.944.36e+22.32e+22.32e-36.78e-4
    Griewank76.536.41.360.613.36e-31.32e-34.56e-156.23e-15
    Ackley60.240.546.633.88.65e-55.41e-51.65e-125.65e-13
    下载: 导出CSV

    表  3  两种算法的辨识结果比较

    Table  3.   Comparison of identification results by using two algorithms

    辨识方法标准差分进化算法改进差分进化算法
    a017.6216.18
    b00.0270.028
    b110.29.37
    Te0.0030.003
    RMS4.21×1041.93×104
    下载: 导出CSV
    Baidu
  • [1] 董全睿, 陈涛, 高世杰, 等. 星载金宝搏188软件怎么用 通信技术研究进展[J]. 中国光学,2019,12(6):1260-1270. doi: 10.3788/co.20191206.1260

    DONG Q R, CHEN T, GAO SH J, et al. Progress of research on satellite-borne laser communication technology[J]. Chinese Optics, 2019, 12(6): 1260-1270. (in Chinese) doi: 10.3788/co.20191206.1260
    [2] 张政江, 孙优贤. 基于阶跃响应的非自衡对象预测控制[J]. 控制与决策,2001,16(3):378-379.

    ZHANG ZH J, SUN Y X. Predictive control algorithm of integrating plant based on step-response[J]. Control and Decision, 2001, 16(3): 378-379. (in Chinese)
    [3] YIN H H, ZHU ZH F, DING F. Model order determination using the Hankel matrix of impulse responses[J]. Applied Mathematics Letters, 2011, 24(5): 797-802. doi: 10.1016/j.aml.2010.12.046
    [4] 陈恒杰, 薛航, 李邵雄, 等. 一种通过约瑟夫森结非线性频率响应确定微波耗散的方法[J]. 物理学报,2019,68(11):118501.

    CHEN H J, XUE H, LI SH X, et al. A method of determining microwave dissipation of Josephson junctions with non-linear frequency response[J]. Acta Physica Sinica, 2019, 68(11): 118501. (in Chinese)
    [5] 唐志荣, 刘明哲, 蒋悦, 等. 基于典型相关分析的点云配准算法[J]. 中国金宝搏188软件怎么用 ,2019,46(4):0404006. doi: 10.3788/CJL201946.0404006

    TANG ZH R, LIU M ZH, JIANG Y, et al. Point cloud registration algorithm based on canonical correlation analysis[J]. Chinese Journal of Lasers, 2019, 46(4): 0404006. (in Chinese) doi: 10.3788/CJL201946.0404006
    [6] 李红云, 云利军, 高银. 基于边界限制加权最小二乘法滤波的雾天图像增强算法[J]. 中国金宝搏188软件怎么用 ,2019,46(3):0309002. doi: 10.3788/CJL201946.0309002

    LI H Y, YUN L J, GAO Y. Fog image enhancement algorithm based on boundary-limited weighted least squares filtering[J]. Chinese Journal of Lasers, 2019, 46(3): 0309002. (in Chinese) doi: 10.3788/CJL201946.0309002
    [7] 周向阳, 朱军, 时延君. 轻小型无人机云台机电多目标优化[J]. 光学 精密工程,2018,26(11):2754-2763. doi: 10.3788/OPE.20182611.2754

    ZHOU X Y, ZHU J, SHI Y J. Multi-objective optimization on mechatronic system of a light and small pan-tilt system for unmanned aerial vehicle application[J]. Optics and Precision Engineering, 2018, 26(11): 2754-2763. (in Chinese) doi: 10.3788/OPE.20182611.2754
    [8] XIA X W, GUI L, YU F, et al. Triple archives particle swarm optimization[J]. IEEE Transactions on Cybernetics, 2019. doi: 10.1109/TCYB.2019.2943928
    [9] BENSINGH R J, MACHAVARAM R, BOOPATHY S R, et al. Injection molding process optimization of a Bi-aspheric lens using hybrid Artificial Neural Networks (ANNs) and Particle Swarm Optimization (PSO)[J]. Measurement, 2019, 134: 359-374. doi: 10.1016/j.measurement.2018.10.066
    [10] 张泉, 尹达一, 张茜丹. 压电执行器动态迟滞建模与LQG最优控制器设计[J]. 光学 精密工程,2018,26(11):2744-2753. doi: 10.3788/OPE.20182611.2744

    ZHANG Q, YIN D Y, ZHANG X D. Dynamic hysteresis modeling and LQG optimal controller design of piezoelectric actuators[J]. Optics and Precision Engineering, 2018, 26(11): 2744-2753. (in Chinese) doi: 10.3788/OPE.20182611.2744
    [11] MALLIPEDDI R, SUGANTHAN P N, PAN Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied Soft Computing, 2011, 11(2): 1679-1696. doi: 10.1016/j.asoc.2010.04.024
    [12] MOHANTY B, PANDA S, HOTA P K, et al. Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system[J]. International Journal of Electrical Power &Energy Systems, 2014, 54: 77-85.
    [13] DEMERTZIS K, ILIADIS L. Adaptive elitist differential evolution extreme learning machines on big data: intelligent recognition of invasive species[C]. Proceedings of the 2nd INNS Conference on Big Data, Springer, 2016: 333-345.
    [14] DENG CH SH, ZHAO B Y, YANG Y L, et al.. Novel binary differential evolution without scale factor F[C]. Proceedings of the 3rd International Workshop on Advanced Computational Intelligence, IEEE, 2010: 250-253.
    [15] 骆晨钟, 邵惠鹤. 采用混沌变异的进化算法[J]. 控制与决策,2000,15(5):557-560.

    LUO CH ZH, SHAO H H. Evolutionary algorithms with chaotic mutations[J]. Control and Decision, 2000, 15(5): 557-560. (in Chinese)
    [16] QU B Y, SUGANTHAN P N, LIANG J J. Differential evolution with neighborhood mutation for multimodal optimization[J]. IEEE Transactions on Evolutionary Computation, 2012, 16(5): 601-614. doi: 10.1109/TEVC.2011.2161873
    [17] AL-GHANIMI A, ZHENG J, MAN Z. A fast non-singular terminal sliding mode control based on perturbation estimation for piezoelectric actuators systems[J]. International Journal of Control, 2017, 90(3): 480-491. doi: 10.1080/00207179.2016.1185157
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  2402
  • HTML全文浏览量:  558
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-11
  • 修回日期:  2020-03-25
  • 网络出版日期:  2020-10-15
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回
    Baidu
    map