-
摘要: 空间 通信凭借其速率高、体积小、质量轻和功耗低的优势,成为卫星间高速通信不可或缺的有效手段,特别在微小卫星应用场合,更能体现 通信的优势。文章详细介绍了微小卫星 通信技术领域最新的研究进展。在此基础上,总结了需要突破的同轨终端轻小型化、异轨终端轻小型化、大气湍流影响抑制等关键技术,归纳了工程化应用、双工通信、单点对多点、国产化和批产能力5个方面的发展趋势。Abstract: With its high speed, small size, light-weight and low power consumption, space laser communication has become an indispensable and effective means of high-speed communication between satellites, especially in micro-satellite applications, which can benefit more strongly from the advantages of laser communication. This paper provides a detailed introduction of the latest research progress in the field of micro-satellite laser communication technology. On this basis, key techniques such as light miniaturization of identical orbital terminals, light miniaturization of different orbital terminals and turbulence mitigation technologies are summarized, and the development trends of the technology’s applications, duplex communication, single-point to multi-point, localization and batch production capacity are concluded.
-
表 1 OCSD-B/C系统主要技术参数
Table 1. Main technical parameters of the OCSD-B/C
序号 技术参数 典型值 1 质量/kg 2.31 2 体积/mm3 10×10×15 3 通信距离/km 450 4 波长/nm 1064 信号光下行1550 信标光上行 5 发射功率/W 2 6 速率/Mbps 50/100验证(200 Mbps设计能力) 7 指向方式 依靠卫星姿态指向 表 2 地面站主要参数
Table 2. Main technical parameters of the ground station
序号 技术参数 典型值 1 口径/mm 40 2 粗跟踪光学视场/(°) 2 3 精跟踪光学视场/(°) 0.2 4 通信光学视场/(°) 0.06 表 3 CLICK系统的主要技术参数
Table 3. Main technical parameters of the CLICK system
序号 技术参数 典型值 1 质量/kg <2.5 2 功耗/W 15平均 3 通信距离/km 25~580(星间) 4 波长/nm 1537/1563 5 发射功率/mW 200 6 速率/Mbps >20(全双工) 7 指向方式 依靠卫星姿态指向,自身配有FPA 表 4 VSOTA的主要技术指标
Table 4. Main technical parameters of the VSOTA
序号 技术参数 典型值 1 质量/kg <1 2 功耗/W <10 3 通信距离/km <2 000 4 波长/nm 通道1:980,
通道2:15405 发射功率/mW 通道1:<540,
通道2:<806 速率/Mbps 0.1~10 7 指向方式 依靠卫星姿态指向 表 5 OPTEL-µ的主要技术指标
Table 5. Main technical parameters of the OPTEL-µ
序号 技术参数 典型值 1 质量/kg <8 2 功耗/W <45 3 通信距离/km 400~900 4 波长/nm 1544/1565 5 速率/Gbps 1.25×2(双波长) 6 指向方式 自带CPA和FPA 表 6 CONDOR的主要技术指标
Table 6. Main technical parameters of the CONDOR
序号 技术参数 典型值 1 质量/kg <18 2 功耗/W <60 3 通光口径/mm 80 4 发射功率/W 1 5 通信速率/Gbps及距离/km <5~10, 5@7780 km 6 波长/nm 1545/1560 7 指向方式 CPA, FPA, PAA 表 7 T5主要技术指标
Table 7. Main technical parameters of the T5
序号 技术参数 典型值 1 质量/kg 5 2 通信距离/km <3000 3 速率/Mbps 100 4 指向方式 旋转双棱镜±30° 表 8 通信终端光束指向机构
Table 8. Laser communication terminal beam pointing mechanism
终端名称 卫星指向 卫星指向和FPA CPA CPA和FPA PAA VSOTA √ FITSAT √ CLICK √ √ OCSD √ √ OPTEL-µ √ √ CONDOR √ √ √ T5 √ -
[1] CAPLAN D O, CARNEY J J, LAFON R E, et al. Design of a 40-watt 1.55 μm uplink transmitter for lunar laser communications[J]. Proceedings of SPIE, 2012, 8246: 82460M. doi: 10.1117/12.915982 [2] KOYAMA Y, TOYOSHIMA M, TAKAYAMA Y, et al.. SOTA: small optical transponder for micro-satellite[C]. Proceedings of 2011 International Conference on Space Optical Systems and Applications, IEEE, 2011: 97-101. [3] JANSON S, WELLE R, ROSE T, et al.. The NASA optical communications and sensor demonstration program: initial flight results[C]. Proceedings of the 29th Annual AIAA/USU Conference on Small Satellites, 2015. [4] ROSE T S, ROWEN D W, LALUMONDIERE S, et al. Optical communications downlink from a 1.5U Cubesat: OCSD program[J]. Proceedings of SPIE, 2018, 11180: 11180J. [5] ROWEN D, JANSON S, COFFMAN C, et al.. The NASA optical communications and sensor demonstration program: proximity operations[C]. Proceedings of the 32th Annual AIAA/USU Conference on Small Satellites, 2018. [6] YENCHESKY L, CIERNY O, GRENFELL P, et al.. Optomechanical design and analysis for nanosatellite laser communications[C]. Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, 2019. [7] SERRA P, CIERNY O, DIEZ R, et al.. Optical communications crosslink payload prototype development for the Cubesat Laser Infrared CrosslinK (CLICK) mission[C]. Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, 2019. [8] KUWAHARA T, YOSHIDA K, TOMIOKA Y, et al.. Laser data downlink system of micro-satellite RISESAT[C]. Proceedings of the 27th Annual AIAA/USU Conference on Small Satellites, 2013. [9] TANAKA T, KAWAMURA Y, TANAKA T. Development and operations of nano-satellite FITSAT-1 (NIWAKA)[J]. Acta Astronautica, 2015, 107: 112-129. doi: 10.1016/j.actaastro.2014.10.023 [10] BAISTER G, GREGER R, BACHER M, et al. OPTEL-μ LEO to ground laser communications terminal: flight design and status of the EQM development project[J]. Proceedings of SPIE, 2016, 10562: 105622U. [11] MÜNCHEBERG S, GAL C, HORWATH J, et al. Development status and breadboard results of a laser communication terminal for large LEO constellations[J]. Proceedings of SPIE, 2018, 11180: 18034. [12] CARRIZO C, KNAPEK M, HORWATH J, et al. Optical inter-satellite link terminals for next generation satellite constellations[J]. Proceedings of SPIE, 2020, 11272: 1127203. [13] 吕佳飞. 微小型卫星 通信终端跟瞄机构的研究[D]. 长春: 长春理工大学, 2017.LV J F.Research for the spaceborne laser communication terminal tracking-pointing turntable[D]. Changchun: Changchun University of Science and Technology, 2017. (in Chinese). [14] TALMOR A G, HARDING JR H, CHEN C C. Two-axis gimbal for air-to-air and air-to-ground laser communications[J]. Proceedings of SPIE, 2016, 9739: 97390G. doi: 10.1117/12.2218097 [15] 李波, 王挺峰, 王弟男, 等. 大气传输湍流扰动仿真技术[J]. 中国光学,2012,5(3):289-295.LI B, WANG T F, WANG D N, et al. Simulation of laser beam propagation through turbulence[J]. Chinese Optics, 2012, 5(3): 289-295. (in Chinese) [16] 赵海丽, 姜会林, 王晓曼, 等. 空间光通信中高帧频相机动态调光技术研究[J]. 液晶与显示,2012,27(2):267-270. doi: 10.3788/YJYXS20122702.0267ZHAO H L, JIANG H L, WANG X M, et al. Dynamic light-adjusting technology of high frame frequency CCD camera in space optical communication system[J]. Chinese Journal of Liquid Crystals and Displays, 2012, 27(2): 267-270. (in Chinese) doi: 10.3788/YJYXS20122702.0267 [17] 王玉坤, 贾娜, 张锐. 通信成像光斑处理方法研究[J]. 液晶与显示,2017,32(9):736-740. doi: 10.3788/YJYXS20173209.0736WANG Y K, JIA N, ZHANG R. Laser communication spots imaging process method[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(9): 736-740. (in Chinese) doi: 10.3788/YJYXS20173209.0736 [18] 高世杰, 盛磊, 吴志勇, 等. 大气 通信光斑图像的快速复原与实时检测[J]. 光学 精密工程,2015,23(8):2393-2399. doi: 10.3788/OPE.20152308.2393GAO SH J, SHENG L, WU ZH Y, et al. Rapid restoration and real-time detection on spot image of atmospheric laser communication[J]. Optics and Precision Engineering, 2015, 23(8): 2393-2399. (in Chinese) doi: 10.3788/OPE.20152308.2393 [19] 马晶, 高庞, 谭立英, 等. 星地光通信中PAT链路的衰落冗余[J]. 光学 精密工程,2007,15(3):308-314.MA J, GAO P, TAN L Y, et al. Fade budgets of PAT link in satellite-to-ground optical communications[J]. Optics and Precision Engineering, 2007, 15(3): 308-314. (in Chinese) [20] 林旭东, 薛陈, 刘欣悦, 等. 自适应光学波前校正器技术发展现状[J]. 中国光学,2012,5(4):337-351.LIN X D, XUE CH, LIU X Y, et al. Current status and research development of wavefront correctors for adaptive optics[J]. Chinese Optics, 2012, 5(4): 337-351. (in Chinese) [21] 刘超, 陈善球, 廖周, 等. 自适应光学技术在通信波段对大气湍流的校正[J]. 光学 精密工程,2014,22(10):2605-2610. doi: 10.3788/OPE.20142210.2605LIU CH, CHEN SH Q, LIAO ZH, et al. Correction of atmospheric turbulence by adaptive optics in waveband of free-space coherent laser communication[J]. Optics and Precision Engineering, 2014, 22(10): 2605-2610. (in Chinese) doi: 10.3788/OPE.20142210.2605 [22] 吴天琦, 王睿扬, 王超, 等. 单模光纤章动跟踪耦合系统设计[J]. 液晶与显示,2020,35(1):62-69. doi: 10.3788/YJYXS20203501.0062WU T Q, WANG R Y, WANG CH, et al. Design of single mode fiber optic nutation tracking coupling system[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(1): 62-69. (in Chinese) doi: 10.3788/YJYXS20203501.0062 [23] 付强, 姜会林, 王晓曼, 等. 空间 通信研究现状及发展趋势[J]. 中国光学,2012,5(2):116-125.FU Q, JIANG H L, WANG X M, et al. Research status and development trend of space laser communication[J]. Chinese Optics, 2012, 5(2): 116-125. (in Chinese) [24] 姜会林, 安岩, 张雅琳, 等. 空间 通信现状、发展趋势及关键技术分析[J]. 飞行器测控学报,2015,34(3):207-217.JIANG H L, AN Y, ZHANG Y L, et al. Analysis of the status quo, development trend and key technologies of space laser communication[J]. Journal of Spacecraft TT &C Technology, 2015, 34(3): 207-217. (in Chinese) [25] VELAZCO J E, WERNICKE D, GRIFFIN J, et al.. Inter-spacecraft omnidirectional optical communicator for swarms[C]. Proceedings of the 33th Annual AIAA/USU Conference on Small Satellites, 2019.