留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interrogation technology for quasi-distributed optical fiber sensing systems based on microwave photonics

WU Ni-shan XIA Li

吴妮珊, 夏历. 基于微波光子学的准分布式光纤传感解调技术[J]. 188bet网站真的吗 , 2021, 14(2): 245-263. doi: 10.37188/CO.2020-0121
引用本文: 吴妮珊, 夏历. 基于微波光子学的准分布式光纤传感解调技术[J]. 188bet网站真的吗 , 2021, 14(2): 245-263. doi: 10.37188/CO.2020-0121
WU Ni-shan, XIA Li. Interrogation technology for quasi-distributed optical fiber sensing systems based on microwave photonics[J]. Chinese Optics, 2021, 14(2): 245-263. doi: 10.37188/CO.2020-0121
Citation: WU Ni-shan, XIA Li. Interrogation technology for quasi-distributed optical fiber sensing systems based on microwave photonics[J]. Chinese Optics, 2021, 14(2): 245-263. doi: 10.37188/CO.2020-0121

基于微波光子学的准分布式光纤传感解调技术

详细信息
  • 中图分类号: O438

Interrogation technology for quasi-distributed optical fiber sensing systems based on microwave photonics

doi: 10.37188/CO.2020-0121
Funds: Supported by National Natural Science Foundation of China (No. 61675078)
More Information
    Author Bio:

    WU Nishan (1995—), female, born in Wuhan City, Hubei Province. She received her bachelor's degree from Huazhong University of Science and Technology in 2017. She is now a doctoral candidate in the School of Optics and Electronic Information, Huazhong University of Science and Technology. She is mainly engaged in the research on the demodulation of optical fiber sensing network. E-mail: nswu@hust.edu.cn

    XIA Li (1976—), male, born in Wuhan City, Hubei Province. He is a doctor, professor and doctoral supervisor. In 2004, he received his doctorate from Tsinghua University. Later he worked as a postdoctor and research fellow in the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. In 2009, he joined the School of Optics and Electronic Information, Huazhong University of Science and Technology. He is mainly engaged in the research of chemical and biological OFS design, OFS microstructure application and OFS network, etc. E-mail: xiali@hust.edu.cn

    Corresponding author: xiali@hust.edu.cn
  • 摘要: 准分布式光纤传感系统在土木工程、能源勘测、航空航天、国防、化工等领域一直发挥着不可替代的重要作用。以微波光子学为基础的准分布式光纤传感解调技术被广泛应用于光纤复用系统的快速、高精度的信号解调与传感器定位。与传统的光学波长解调方案相比,该技术大幅提高了系统的解调速率,弥补了传统解调方法在传感器定位方面的缺陷。本文主要介绍了近年来国内外在基于微波光子学的准分布式光纤传感解调领域的研究进展,从光纤光栅准分布式传感系统和光纤法布里-珀罗准分布式传感系统两方面入手,对比分析了现有的数种微波解调光纤准分布式系统的优缺点,并对基于微波光子学的准分布式光纤传感解调技术的未来发展方向进行了总结与展望。

     

  • 图 1  基于MPF的光纤光栅准分布式传感解调系统示意图

    Figure 1.  Diagram of FBG quasi-distributed sensing demodulation system based on MPF

    图 2  基于矢量网络分析仪的MPF光纤光栅准分布式传感解调系统示意图

    Figure 2.  Diagram of MPF FBG quasi-distributed sensing demodulation system based on VNA

    图 3  基于MPF的弱反光纤光栅准分布式传感解调系统[21]

    Figure 3.  Weak-reflection FBG quasi-distributed sensing demodulation system based on MPF[21]

    图 4  基于多抽头MPF的超短光栅差分解调系统及其基本原理示意图[24]

    Figure 4.  Basic structure and principle of ultra-short-FBG differential demodulation system based on multi-tap MPF[24]

    图 5  基于双Sagnac环和差分滤波的WDM准分布式传感微波解调系统。(a)系统结构示意图;(b)双Sagnac环光谱图;(c)由频域响应逆傅里叶变换得到的时域响应谱[27]

    Figure 5.  WDM quasi-distributed sensing microwave demodulation system based on double Sagnac loops and differential filtering. (a) System structure diagram; (b) Spectra of double Sagnac loops; (c) Time-domain response spectrum obtained from frequency response IFFT[27]

    图 6  基于DCF的微波光子外差准分布式光栅解调系统[32]

    Figure 6.  Microwave photon heterodyne quasi-distributed grating demodulation system based on DCF[32]

    图 7  基于混沌源IOFDR的超弱光纤光栅准分布式传感解调系统示意图[35]

    Figure 7.  Schematic diagram of ultra-weak FBG quasi-distributed sensing demodulation system based on chaos source IOFDR[35]

    图 8  OEO系统基本结构示意图

    Figure 8.  Basic structure of OEO system

    图 9  基于OCMI技术的光纤FP准分布式传感解调系统[38]

    Figure 9.  Fiber FP quasi-distributed sensing demodulation system based on OCMI technique[38]

    图 10  基于CMPI技术的光纤FP准分布式传感解调系统示意图[44]

    Figure 10.  Fiber FP quasi-distributed sensing demodulation system based on CMPI technique[44]

    表  1  Comparison of different microwave demodulation concepts for FBG quasi-distributed system

    Table  1.   Comparison of different microwave demodulation concepts for FBG quasi-distributed system

    Demodulation
    concept
    Multiplexing
    capacity/piece/m
    Spatial resolution/mDemodulation rateOther characteristics
    Microwave photonic filter structure[23]500 (experiment)0.2Limited by the VNA scanning rateCapable of demodulating the dense systems with a spacing less than coherence length
    Microwave photonic filter structure + wide-spectrum differential filtering[27]19400 (theory)0.1Limited by the VNA scanning rateSuitable for the demodulation of WDM system; immune to power fluctuations
    Microwave photonic heterodyne +DCF-SMF dual-channel demodulation[33]105 (experiment)180 kHzDynamic demodulation; wavelength demodulation accuracy: 6.96 pm
    Incoherent optical frequency domain reflection from chaotic sources[34]3640 (experiment)0.1Limited by the wavelength scanning rate of light sourceLow coherent noise; capable of demodulating a large-scale multiplexing system
    Optoelectronic oscillator structure[39]62 (theory)10.61 sSignal-to-noise ratio > 35 dB; frequency instability < 28 kHz
    下载: 导出CSV
    Baidu
  • [1] KERSEY A D, DAVIS M A, PATRICK H J, et al. Fiber grating sensors[J]. Journal of Lightwave Technology, 1997, 15(8): 1442-1463. doi: 10.1109/50.618377
    [2] ZHAO CH L, YANG X F, DEMOKAN M S, et al. Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating[J]. Journal of Lightwave Technology, 2006, 24(2): 879-883. doi: 10.1109/JLT.2005.862471
    [3] MAJUMDER M, GANGOPADHYAY T K, CHAKRABORTY A K, et al. Fibre Bragg gratings in structural health monitoring-present status and applications[J]. Sensors and Actuators A:Physical, 2008, 147(1): 150-164. doi: 10.1016/j.sna.2008.04.008
    [4] DAI Y B, LIU Y J, LENG J S, et al. A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring[J]. Optics and Lasers in Engineering, 2009, 47(10): 1028-1033. doi: 10.1016/j.optlaseng.2009.05.012
    [5] MIHAILOV S J. Fiber Bragg grating sensors for harsh environments[J]. Sensors, 2012, 12(2): 1898-1918. doi: 10.3390/s120201898
    [6] LAFFONT G, COTILLARD R, FERDINAND P. Multiplexed regenerated fiber Bragg gratings for high-temperature measurement[J]. Measurement Science and Technology, 2013, 24(9): 094010. doi: 10.1088/0957-0233/24/9/094010
    [7] WU W. Research and application of large capacity fiber grating sensor demodulation system[D]. Wuhan: Wuhan University of Technology, 2009: 3-4. (in Chinese).
    [8] LIU SH, HAN X Y, XIONG Y C, et al. Distributed vibration detection system based on weak fiber Bragg grating array[J]. Chinese Journal of Lasers, 2017, 44(2): 0210001. (in Chinese) doi: 10.3788/CJL201744.0210001
    [9] LI Y, XU M, WANG Q Y, et al. Strain sensing properties of UV-written fiber grating[J]. Chinese Journal of Luminescence, 2000, 21(1): 61-63. (in Chinese) doi: 10.3321/j.issn:1000-7032.2000.01.014
    [10] ZHANG ZH Y. One-piece flow target type based on fiber Bragg grating sensing technology[J]. Chinese Journal of Luminescence, 2020, 41(2): 217-223. (in Chinese)
    [11] LI L B. Research on capillary-based fiber F-P vibration sensor[D]. Wuhan: Huazhong University of Science and Technology, 2014: 6-7. (in Chinese).
    [12] CAI N. The simulation and demodulation of optical fiber FP sensing structure[D]. Wuhan: Huazhong University of Science and Technology, 2019: 2-5. (in Chinese).
    [13] CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330. doi: 10.1038/nphoton.2007.89
    [14] YAO J P. Arbitrary waveform generation[J]. Nature Photonics, 2010, 4(2): 79-80. doi: 10.1038/nphoton.2009.276
    [15] ZHENG D, ZOU X H, PAN W, et al. Advances of optical fiber sensing interrogation techniques based on microwave photonics[J]. Study on Optical Communications, 2018, 44(6): 21-30. (in Chinese)
    [16] SAUER M, KOBYAKOV A, GEORGE J. Radio over fiber for Picocellular network architectures[J]. Journal of Lightwave Technology, 2007, 25(11): 3301-3320. doi: 10.1109/JLT.2007.906822
    [17] GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341-345. doi: 10.1038/nature13078
    [18] ZOU X H, BAI W L, CHEN W, et al. Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing[J]. Journal of Lightwave Technology, 2018, 36(19): 4337-4346. doi: 10.1109/JLT.2018.2813663
    [19] RICCHIUTI A L, BARRERA D, SALES S, et al. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques[J]. Optics Express, 2013, 21(23): 28175-28181. doi: 10.1364/OE.21.028175
    [20] RICCHIUTI A L, HERVÁS J, BARRERA D, et al. Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor[J]. IEEE Photonics Journal, 2014, 6(6): 5501410.
    [21] XIA L, CHENG R, LI W, et al. Identical FBG-based quasi-distributed sensing by monitoring the microwave responses[J]. IEEE Photonics Technology Letters, 2015, 27(3): 323-325. doi: 10.1109/LPT.2014.2370650
    [22] WERZINGER S, BERGDOLT S, ENGELBRECHT R, et al. Quasi-distributed fiber Bragg grating sensing using stepped incoherent optical frequency domain Reflectometry[J]. Journal of Lightwave Technology, 2016, 34(22): 5270-5277. doi: 10.1109/JLT.2016.2614581
    [23] HERVÁS J, BARRERA D, MADRIGAL J, et al. Microwave photonics filtering interrogation technique under coherent regime for hot spot detection on a weak FBGs array[J]. Journal of Lightwave Technology, 2018, 36(4): 1039-1045. doi: 10.1109/JLT.2018.2793161
    [24] CHENG R, XIA L, SIMA C T, et al. Ultra-short FBG based distributed sensing using shifted optical Gaussian filters and microwave-network analysis[J]. Optics Express, 2016, 24(3): 2466-2484. doi: 10.1364/OE.24.002466
    [25] HERVÁS J, FERNÁNDEZ-POUSA C R, BARRERA D, et al. An interrogation technique of FBG cascade sensors using wavelength to radio-frequency delay mapping[J]. Journal of Lightwave Technology, 2015, 33(11): 2222-2227. doi: 10.1109/JLT.2015.2409318
    [26] ZHENG D, MADRIGAL J, BARRERA D, et al. Microwave photonic filtering for interrogating FBG-based multicore fiber curvature sensor[J]. IEEE Photonics Technology Letters, 2017, 29(20): 1707-1710. doi: 10.1109/LPT.2017.2742579
    [27] WU N SH, XIA L, SONG Y M, et al. Simultaneous differential interrogation for Multiple FBGs based on Crossed Sagnac loops and microwave network[J]. Journal of Lightwave Technology, 2019, 37(23): 5953-5960. doi: 10.1109/JLT.2019.2944401
    [28] ZHOU L. Research on high-speed demodulation of weak grating array based on microwave photonics and chromatic dispersion[D]. Wuhan: Wuhan University of Technology, 2018: 16-18. (in Chinese).
    [29] DONG X Y, SHAO L Y, FU H Y, et al. Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement[J]. Optics Letters, 2008, 33(5): 482-484. doi: 10.1364/OL.33.000482
    [30] CHENG R, XIA L, YAN J, et al. Radio frequency FBG-based interferometer for remote adaptive strain monitoring[J]. IEEE Photonics Technology Letters, 2015, 27(15): 1577-1580. doi: 10.1109/LPT.2015.2406112
    [31] WANG Y P, ZHANG J J, COUTINHO O, et al. Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform[J]. Optics Letters, 2015, 40(21): 4923-4926. doi: 10.1364/OL.40.004923
    [32] ZHOU L, LI ZH Y, XIANG N, et al. High-speed demodulation of weak fiber Bragg gratings based on microwave photonics and chromatic dispersion[J]. Optics Letters, 2018, 43(11): 2430-2433. doi: 10.1364/OL.43.002430
    [33] LIANG X, XIANG N, LI ZH Y, et al. Precision dynamic sensing with ultra-weak fiber Bragg grating arrays by wavelength to frequency transform[J]. Journal of Lightwave Technology, 2019, 37(14): 3526-3531. doi: 10.1109/JLT.2019.2917602
    [34] WANG J Q, LI ZH Y, YANG Q, et al. Interrogation of a large-capacity densely spaced fiber Bragg grating array using chaos-based incoherent-optical frequency domain reflectometry[J]. Optics Letters, 2019, 44(21): 5202-5205. doi: 10.1364/OL.44.005202
    [35] YANG Q, WANG J Q, FU X L, et al.. High-spatial resolution demodulation of weak FBGs based on incoherent optical frequency domain Reflectometry using a chaotic laser[C]. Proceedings of 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE, 2019: 994-998.
    [36] YANG Y G, WANG M G, SHEN Y, et al. Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating[J]. IEEE Photonics Journal, 2018, 10(1): 6800309.
    [37] ZHANG N H, WU B L, WANG M G, et al. High-sensitivity sensing for relative humidity and temperature based on an optoelectronic oscillator using a polyvinyl alcohol-fiber Bragg grating-Fabry Perot filter[J]. IEEE Access, 2019, 7: 148756-148763. doi: 10.1109/ACCESS.2019.2946991
    [38] XU Z W, SHU X W, FU H Y. Fiber Bragg grating sensor interrogation system based on an optoelectronic oscillator loop[J]. Optics Express, 2019, 27(16): 23274-23281. doi: 10.1364/OE.27.023274
    [39] WANG W X, LIU Y, DU X W, et al. Ultra-stable and real-time Demultiplexing system of strong fiber Bragg grating sensors based on low-frequency optoelectronic oscillator[J]. Journal of Lightwave Technology, 2020, 38(4): 981-988. doi: 10.1109/JLT.2019.2949682
    [40] HUANG J, HUA L, LAN X W, et al. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing[J]. Optics Express, 2013, 21(15): 18152-18159. doi: 10.1364/OE.21.018152
    [41] HUANG J, LAN X W, LUO M, et al. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry[J]. Optics Express, 2014, 22(15): 18757-18769. doi: 10.1364/OE.22.018757
    [42] HUA L W, SONG Y, HUANG J, et al. Femtosecond laser fabricated multimode fiber sensors interrogated by optical-carrier-based microwave interferometry technique for distributed strain sensing[J]. Proceedings of SPIE, 2016, 9754: 97540V.
    [43] BENÍTEZ J, BOLEA M, MORA J. Demonstration of multiplexed sensor system combining low coherence interferometry and microwave photonics[J]. Optics Express, 2017, 25(11): 12182-12187. doi: 10.1364/OE.25.012182
    [44] HUA L W, SONG Y, CHENG B K, et al. Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry[J]. Optics Express, 2017, 25(25): 31362-31376. doi: 10.1364/OE.25.031362
    [45] HUA L W. Microwave photonics for distributed sensing[D]. Clemson: Clemson University, 2017: 88-97.
    [46] COELHO L C C, DE ALMEIDA J M M M, MOAYYED H, et al. Multiplexing of surface Plasmon resonance sensing devices on etched single-mode fiber[J]. Journal of Lightwave Technology, 2015, 33(2): 432-438. doi: 10.1109/JLT.2014.2386141
    [47] LIU Q, JING ZH G, LIU Y Y, et al. Multiplexing fiber-optic Fabry-Perot acoustic sensors using self-calibrating wavelength shifting interferometry[J]. Optics Express, 2019, 27(26): 38191-38203. doi: 10.1364/OE.381197
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2733
  • HTML全文浏览量:  1130
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-14
  • 修回日期:  2020-08-13
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-03-23

目录

    /

    返回文章
    返回
    Baidu
    map