Research progress on organic self-assembling low-dimensional circularly polarized luminescent materials
-
摘要:具有圆偏振发光(CPL)性质的材料由于在3D显示、光学存储以及光学防伪等领域的重要应用,近年来越来越受到研究人员的关注。超分子策略能够将不同类型的分子组装成具有独特功能的低维(零维、一维和二维等)结构,因而成为构筑CPL活性有机低维材料的最有效方法之一。本文从超分子自组装驱动力的角度综述了近几年自组装CPL活性有机低维材料的研究进展。首先,本文系统地总结了现阶段设计自组装CPL活性有机低维材料的策略,其次重点讨论了这类材料的性能及应用,最后探讨了这一领域未来的发展机遇和挑战。Abstract:In recent years, materials with Circularly Polarized Luminescence (CPL) have received growing attention due to their wide applications in 3D displays, optical storage, optical security, etc. Supramolecular self-assembling is one of the most effective methods to construct CPL active materials, which can assemble different types of molecules into low-dimensional (0D, 1D and 2D) structures with unique functions. This review summarizes the research progress of self-assembled CPL active organic low-dimensional materials from recent years with emphasis on the driving force of supramolecular self-assembly. Firstly, the review systematically summarizes the current design strategies of self-assembled CPL active organic low-dimensional materials. Secondly, it focuses on their performance and applications. Finally, it discusses the future opportunities and challenges of this rapidly developing field.
-
图 1多重氢键参与的共组装过程。(a)B-DNA结构中的多重氢键。(b)羧酸和吡啶类粘合剂之间的双重氢键能够形成手性纳米结构。(c)芳香族氨基酸和粘合剂的化学结构[25]
Figure 1.The co-assembly process with multiple hydrogen bonds. (a) Multiple hydrogen bonds in B-DNA structures. (b) The double hydrogen bond between carboxylic acids and pyridine-based binders can form chiral nanostructures. (c) The chemical structures of aromatic amino acids and binders[25]
-
[1] LI ZH CH, LIU W W, CHENG H,et al. Spin-selective transmission and devisable chirality in two-layer metasurfaces[J].Scientific Reports, 2017, 7: 8204.doi:10.1038/s41598-017-08527-4 [2] TAMURA K, SCHIMMEL P R. Chiral-selective aminoacylation of an RNA minihelix: mechanistic features and chiral suppression[J].Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(37): 13750-13752.doi:10.1073/pnas.0606070103 [3] 李猛, 林伟彬, 房蕾, 等. 手性有机小分子圆偏振发光的研究进展[J]. 化学学报,2017,75(12):1150-1163.doi:10.6023/A17090440LI M, LIN W B, FANG L,et al. Recent progress on circularly polarized luminescence of chiral organic small molecules[J].Acta Chimica Sinica, 2017, 75(12): 1150-1163. (in Chinese)doi:10.6023/A17090440 [4] ZINNA F, PASINI M, GALEOTTI F,et al. Design of lanthanide-based OLEDs with remarkable circularly polarized electroluminescence[J].Advanced Functional Materials, 2017, 27(1): 1603719.doi:10.1002/adfm.201603719 [5] SONG F Y, XU Z, ZHANG Q SH,et al. Highly efficient circularly polarized electroluminescence from aggregation-induced emission luminogens with amplified chirality and delayed fluorescence[J].Advanced Functional Materials, 2018, 28(17): 1800051.doi:10.1002/adfm.201800051 [6] YANG Y, DA COSTA R C, FUCHTER M J,et al. Circularly polarized light detection by a chiral organic semiconductor transistor[J].Nature Photonics, 2013, 7(8): 634-638.doi:10.1038/nphoton.2013.176 [7] TANG ZH L, IIDA H, HU H Y,et al. Remarkable enhancement of the enantioselectivity of an organocatalyzed asymmetric henry reaction assisted by helical poly(phenylacetylene)s bearing cinchona alkaloid pendants via an amide linkage[J].ACS Macro Letters, 2012, 1(2): 261-265.doi:10.1021/mz200161s [8] KITAGAWA Y, WADA S, ISLAM M D J,et al. Chiral lanthanide lumino-glass for a circularly polarized light security device[J].Communications Chemistry, 2020, 3: 119.doi:10.1038/s42004-020-00366-1 [9] SANG Y T, HAN J L, ZHAO T H,et al. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application[J].Advanced Materials, 2020, 32(41): 1900110.doi:10.1002/adma.201900110 [10] 李军峰, 刘训华, 陈瑛, 等. 基于手性环己二胺稀土Eu(Ⅲ)高分子在能量传递和圆偏振荧光调控方面的研究[J]. 高分子学报,2015(3):252-258.doi:10.11777/j.issn1000-3304.2015.14245LI J F, LIU X H, CHEN Y,et al. Tuning circularly polarized luminescence and energy transfer of Eu(Ⅲ)-grafting(R, R)-1, 2-aminocyclohexane polymers based on variable alkyl chains[J].Acta Polymerica Sinica, 2015(3): 252-258. (in Chinese)doi:10.11777/j.issn1000-3304.2015.14245 [11] LIU M H, ZHANG L, WANG T Y. Supramolecular chirality in self-assembled systems[J].Chemical Reviews, 2015, 115(15): 7304-7397.doi:10.1021/cr500671p [12] LIU J ZH, SU H M, MENG L M,et al. What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission[J].Chemical Science, 2012, 3(9): 2737-2747.doi:10.1039/c2sc20382k [13] XU L, WANG CH, LI Y X.et al. Crystallization-driven asymmetric helical assembly of conjugated block copolymers and the aggregation induced white-light emission and circularly polarized luminescence[J].Angewandte Chemie International Edition, 2020, 59(38): 16675-16682.doi:10.1002/anie.202006561 [14] LI F, WANG Y X, Wang Z Y,et al. Red colored CPL emission of chiral 1, 2-DACH-based polymersviachiral transfer of the conjugated chain backbone structure[J].Polymer Chemistry, 2015, 6(38): 6802-6805.doi:10.1039/C5PY01148E [15] ZHANG SH W, SHENG Y, WEI G,et al. Aggregation-induced circularly polarized luminescence of an (R)-binaphthyl-based AIE-active chiral conjugated polymer with self-assembled helical nanofibers[J].Polymer Chemistry, 2015, 6(13): 2416-2422.doi:10.1039/C4PY01689K [16] WANG Y X, LI Y ZH, LIU SH,et al. Regulating circularly polarized luminescence signals of chiral binaphthyl-based conjugated polymers by tuning dihedral angles of binaphthyl moieties[J].Macromolecules, 2016, 49(15): 5444-5451.doi:10.1021/acs.macromol.6b00883 [17] DENG M, MUKTHAR N F M, SCHLEY N D,et al. Yellow circularly polarized luminescence fromC1-symmetrical copper(I) complexes[J].Angewandte Chemie International Edition, 2020, 59(3): 1228-1231.doi:10.1002/anie.201913672 [18] HUANG Z ZH, MA X. Tailoring tunable luminescence via supramolecular assembly strategies[J].Cell Reports Physical Science, 2020, 1(8): 100167.doi:10.1016/j.xcrp.2020.100167 [19] KUMAR J, NAKASHIMA T, KAWAI T. Circularly polarized luminescence in chiral molecules and supramolecular assemblies[J].The Journal of Physical Chemistry Letters, 2015, 6(17): 3445-3452.doi:10.1021/acs.jpclett.5b01452 [20] HU M, FENG H T, YUAN Y X,et al. Chiral AIEgens-chiral recognition, CPL materials and other chiral applications[J].Coordination Chemistry Reviews, 2020, 416: 213329.doi:10.1016/j.ccr.2020.213329 [21] ZHAO T H, HAN J L, DUAN P F,et al. New perspectives to trigger and modulate circularly polarized luminescence of complex and aggregated systems: energy transfer, photon upconversion, charge transfer, and organic radical[J].Accounts of Chemical Research, 2020, 53(7): 1279-1292.doi:10.1021/acs.accounts.0c00112 [22] DUDEK S P, POUDEROIJEN M, ABBEL R,et al. Synthesis and energy-transfer properties of hydrogen-bonded oligofluorenes[J].Journal of the American Chemical Society, 2005, 127(33): 11763-11768.doi:10.1021/ja052054k [23] MARANGONI T, BONIFAZI D. Nano- and microstructuration of supramolecular materials driven by H-bonded uracil·2, 6-diamidopyridine complexes[J].Nanoscale, 2013, 5(19): 8837-8851.doi:10.1039/c3nr01711g [24] ZHANG T, CHEN H, MA X,et al. Amorphous 2-bromocarbazole copolymers with efficient room-temperature phosphorescent emission and applications as encryption ink[J].Industrial&Engineering Chemistry Research, 2017, 56(11): 3123-3128. [25] XING P Y, LI Y X, XUE S X,et al. Occurrence of chiral nanostructures induced by multiple hydrogen bonds[J].Journal of the American Chemical Society, 2019, 141(25): 9946-9954.doi:10.1021/jacs.9b03502 [26] WANG ZH E, HAO A Y, XING P Y. Chiroptical helices of N-terminal aryl amino acids through orthogonal noncovalent interactions[J].Angewandte Chemie International Edition, 2020, 59(28): 11556-11565.doi:10.1002/anie.202003351 [27] YANG L, WANG F, AUPHEDEOUS D I Y,et al. Achiral isomers controlled circularly polarized luminescence in supramolecular hydrogels[J].Nanoscale, 2019, 11(30): 14210-14215.doi:10.1039/C9NR05033G [28] YE Q, ZHU D D, XU L Y,et al. The fabrication of helical fibers with circularly polarized luminescenceviaionic linkage of binaphthol and tetraphenylethylene derivatives[J].Journal of Materials Chemistry C, 2016, 4(7): 1497-1503.doi:10.1039/C5TC04174K [29] YUAN X Y, HU M, ZHANG K R,et al. The largest CPL enhancement by further assembly of self-assembled superhelices based on the helical TPE macrocycle[J].Materials Horizons, 2020.doi:10.1039/domh01303j [30] JI L K, ZHAO Y, TAO M,et al. Dimension-tunable circularly polarized luminescent nanoassemblies with emerging selective chirality and energy transfer[J].ACS Nano, 2020, 14(2): 2373-2384.doi:10.1021/acsnano.9b09584 [31] GOTO T, OKAZAKI Y, UEKI M,et al. Induction of strong and tunable circularly polarized luminescence of nonchiral, nonmetal, low-molecular-weight fluorophores using chiral nanotemplates[J].Angewandte Chemie International Edition, 2017, 56(11): 2989-2993.doi:10.1002/anie.201612331 [32] WANG H, JI X F, LI ZH T,et al. Fluorescent supramolecular polymeric materials[J].Advanced Materials, 2017, 29(14): 1606117.doi:10.1002/adma.201606117 [33] YEUNG C T, YIM K H, WONG H Y,et al. Chiral transcription in self-assembled tetrahedral Eu4L6chiral cages displaying sizable circularly polarized luminescence[J].Nature Communications, 2017, 8(1): 1128.doi:10.1038/s41467-017-01025-1 [34] WONG K M C, YAM V W W. Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical properties through aggregation behavior[J].Accounts of Chemical Research, 2011, 44(6): 424-434.doi:10.1021/ar100130j [35] ZHOU Y Y, LI H F, ZHU T Y,et al. A highly luminescent chiral tetrahedral Eu4L4(L')4cage: chirality induction, chirality memory, and circularly polarized luminescence[J].Journal of the American Chemical Society, 2019, 141(50): 19634-19643.doi:10.1021/jacs.9b07178 [36] ZHU H T ZH, LI Q, SHI B B,et al. Formation of planar chiral platinum triangles via pillar[5]arene for circularly polarized luminescence[J].Journal of the American Chemical Society, 2020, 142(41): 17340-17345.doi:10.1021/jacs.0c09598 [37] TAN Y B, OKAYASU Y, KATAO S,et al. Visible circularly polarized luminescence of octanuclear circular Eu(Ⅲ) helicate[J].Journal of the American Chemical Society, 2020, 142(41): 17653-17661.doi:10.1021/jacs.0c08229 [38] ZHAO T H, HAN J L, JIN X,et al. Enhanced circularly polarized luminescence from reorganized chiral emitters on the skeleton of a zeolitic imidazolate framework[J].Angewandte Chemie International Edition, 2019, 58(15): 4978-4982.doi:10.1002/anie.201900052 [39] LUSTIG W P, WANG F M, TEAT S J,et al. Chromophore-based luminescent metal-organic frameworks as lighting phosphors[J].Inorganic Chemistry, , 2016, 55(15): 7250-7256.doi:10.1021/acs.inorgchem.6b00897 [40] BAUDRON S A. Luminescent metal-organic frameworks based on dipyrromethene metal complexes and BODIPYs[J].CrystEngComm, 2016, 18(25): 4671-4680.doi:10.1039/C6CE00450D [41] ZHAO T H, HAN J L, JIN X,et al. Dual-mode induction of tunable circularly polarized luminescence from chiral metal-organic frameworks[J].Research, 2020, 2020: 6452123. [42] ZHANG M M, LI K, ZANG S Q. Progress in atomically precise coinage metal clusters with aggregation-induced emission and circularly polarized luminescence[J].Advanced Optical Materials, 2020, 8(14): 1902152.doi:10.1002/adom.201902152 [43] KONG Y J, YAN ZH P, LI S,et al. Photoresponsive propeller-like chiral AIE Copper(I) clusters[J].Angewandte Chemie International Edition, 2020, 59(13): 5336-5340.doi:10.1002/anie.201915844 [44] ZHANG M M, DONG X Y, WANG ZH Y,et al. AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters[J].Angewandte Chemie International Edition, 2020, 59(25): 10052-10058.doi:10.1002/anie.201908909 [45] HAN ZH, DONG X Y, LUO P,et al. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency[J].Science Advances, 2020, 6(6): eaay0107.doi:10.1126/sciadv.aay0107 [46] 周明浩, 姜爽, 张天永, 等. 手性钙钛矿纳米材料的构筑及光电性能[J]. 化学进展,2020,32(4):361-370.ZHOU M H, JIANG SH, ZHANG T Y,et al. Construction and optoelectrical properties of chiral perovskite nanomaterials[J].Progress in Chemistry, 2020, 32(4): 361-370. (in Chinese) [47] BILLING D G, LEMMERER A. Bis[(S)-β-phenethylammonium] tribromoplumbate(II)[J].Acta Crystallographica Section E, 2003, E59(6): m381-m383. [48] CHEN W J, ZHANG SH, ZHOU M H,et al. Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals[J].The Journal of Physical Chemistry Letters, 2019, 10(12): 3290-3295.doi:10.1021/acs.jpclett.9b01224 [49] DANG Y Y, LIU X L, SUN Y J,et al. Bulk chiral halide perovskite single crystals for active circular dichroism and circularly polarized luminescence[J].The Journal of Physical Chemistry Letters, 2020, 11(5): 1689-1696.doi:10.1021/acs.jpclett.9b03718 [50] PEDERSEN C J. Cyclic polyethers and their complexes with metal salts[J].Journal of the American Chemical Society, 1967, 89(26): 7017-7036.doi:10.1021/ja01002a035 [51] MA X, TIAN H. Stimuli-responsive supramolecular polymers in aqueous solution[J].Accounts of Chemical Research, 2014, 47(7): 1971-1981.doi:10.1021/ar500033n [52] SHINKAI S. Calixarenes-the third generation of supramolecules[J].Tetrahedron, 1993, 49(40): 8933-8968.doi:10.1016/S0040-4020(01)91215-3 [53] XUE M, YANG Y, CHI X D,et al. Pillararenes, a new class of macrocycles for supramolecular chemistry[J].Accounts of Chemical Research, 2012, 45(8): 1294-1308.doi:10.1021/ar2003418 [54] CHEN J F, YIN X D, WANG B W,et al. Planar chiral organoboranes with thermoresponsive emission and circularly polarized luminescence: integration of pillar[5]arenes with boron chemistry[J].Angewandte Chemie International Edition, 2020, 59(28): 11267-11272.doi:10.1002/anie.202001145 [55] TONG SH, LI J T, LIANG D D,et al. Catalytic enantioselective synthesis and switchable chiroptical property of inherently chiral macrocycles[J].Journal of the American Chemical Society, 2020, 142(34): 14432-14436.doi:10.1021/jacs.0c05369 [56] HU L Y, LI K, SHANG W L,et al. Emerging cubic chirality in γCD-MOF for fabricating circularly polarized luminescent crystalline materials and the size effect[J].Angewandte Chemie International Edition, 2020, 59(12): 4953-4958.doi:10.1002/anie.202000589 [57] LIANG J Q, GUO P P, QIN X J,et al. Hierarchically chiral lattice self-assembly induced circularly polarized luminescence[J].ACS Nano, 2020, 14(3): 3190-3198.doi:10.1021/acsnano.9b08408 [58] HAN J M, GUO S, LU H,et al. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices[J].Advanced Optical Materials, 2018, 6(17): 1800538.doi:10.1002/adom.201800538 [59] HAN J M, GUO S, WANG J,et al. Circularly polarized phosphorescent electroluminescence from chiral cationic iridium(III) isocyanide complexes[J].Advanced Optical Materials, 2017, 5(22): 1700359.doi:10.1002/adom.201700359 [60] HAN J M, LU H, XU Y N,et al. Concentration-dependent circularly polarized luminescence of chiral cyclometalated platinum(II) complexes for electroluminescence[J].Journal of Organometallic Chemistry, 2020, 915: 121240.doi:10.1016/j.jorganchem.2020.121240 [61] TU ZH L, YAN ZH P, LIANG X,et al. Axially chiral biphenyl compound-based thermally activated delayed fluorescent materials for high-performance circularly polarized organic light-emitting diodes[J].Advanced Science, 2020, 7(15): 2000804.doi:10.1002/advs.202000804 [62] TAO J W, ZOU CH, JIANG H J,et al. Optically ambidextrous reflection and luminescence in self-organized left-handed chiral nematic cellulose nanocrystal films[J].CCS Chemistry, 2020, 2(5): 932-945. [63] ZHAO Y, NIU D, TAN J J,et al. Alkaline-earth metal ion turn-on circularly polarized luminescence and encrypted selective recognition of AMP[J].Small Methods, 2020, 4(10): 2000493.doi:10.1002/smtd.202000493 [64] 李庆祥, 梁鸿宇, 陆学民, 等. 诱导手性圆偏振发光材料的研究进展[J]. 功能高分子学报,2019,32(6):671-682.LI Q X, LIANG H Y, LU X M,et al. Recent progress in chiral materials with induced circularly polarized luminescence[J].Journal of Functional Polymers, 2019, 32(6): 671-682. (in Chinese)