留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机自组装低维圆偏振发光材料的研究进展

王梦竹 邓勇靖 刘淑娟 赵强

王梦竹, 邓勇靖, 刘淑娟, 赵强. 有机自组装低维圆偏振发光材料的研究进展[J]. 188bet网站真的吗 , 2021, 14(1): 66-76. doi: 10.37188/CO.2020-0192
引用本文: 王梦竹, 邓勇靖, 刘淑娟, 赵强. 有机自组装低维圆偏振发光材料的研究进展[J]. 188bet网站真的吗 , 2021, 14(1): 66-76. doi: 10.37188/CO.2020-0192
WANG Meng-Zhu, DENG Yong-Jing, LIU Shu-Juan, ZHAO Qiang. Research progress on organic self-assembling low-dimensional circularly polarized luminescent materials[J]. Chinese Optics, 2021, 14(1): 66-76. doi: 10.37188/CO.2020-0192
Citation: WANG Meng-Zhu, DENG Yong-Jing, LIU Shu-Juan, ZHAO Qiang. Research progress on organic self-assembling low-dimensional circularly polarized luminescent materials[J]. Chinese Optics, 2021, 14(1): 66-76. doi: 10.37188/CO.2020-0192

有机自组装低维圆偏振发光材料的研究进展

基金项目: 国家杰出青年科学基金(No. 61825503);国家自然科学基金(No. 61775101, No. 61805122)
详细信息
    作者简介:

    王梦竹(1990—),男,河南信阳人,博士研究生,2019年于温州大学获得硕士学位,主要从事有机圆偏振发光材料的研究。E-mail:18257753336@163.com

    赵 强(1978—),男,山东淄博人,教授,2007年于复旦大学获得博士学位,2010年8月晋升为南京邮电大学教授,主要从事有机与生物光电子学研究。E-mail:iamqzhao@njupt.edu.cn

  • 中图分类号: O6-1; O439

Research progress on organic self-assembling low-dimensional circularly polarized luminescent materials

Funds: Supported by National Funds for Distinguished Young Scientists (No. 61825503); National Natural Science Foundation of China (No. 61775101, No. 61805122)
More Information
  • 摘要: 具有圆偏振发光(CPL)性质的材料由于在3D显示、光学存储以及光学防伪等领域的重要应用,近年来越来越受到研究人员的关注。超分子策略能够将不同类型的分子组装成具有独特功能的低维(零维、一维和二维等)结构,因而成为构筑CPL活性有机低维材料的最有效方法之一。本文从超分子自组装驱动力的角度综述了近几年自组装CPL活性有机低维材料的研究进展。首先,本文系统地总结了现阶段设计自组装CPL活性有机低维材料的策略,其次重点讨论了这类材料的性能及应用,最后探讨了这一领域未来的发展机遇和挑战。

     

  • 图 1  多重氢键参与的共组装过程。(a)B-DNA结构中的多重氢键。(b)羧酸和吡啶类粘合剂之间的双重氢键能够形成手性纳米结构。(c)芳香族氨基酸和粘合剂的化学结构[25]

    Figure 1.  The co-assembly process with multiple hydrogen bonds. (a) Multiple hydrogen bonds in B-DNA structures. (b) The double hydrogen bond between carboxylic acids and pyridine-based binders can form chiral nanostructures. (c) The chemical structures of aromatic amino acids and binders[25]

    图 2  π-结构单元(GluCN)分别与硫黄素T(ThT)和羧酸氰基二苯乙烯衍生物(CAN)共组装示意图[30]

    Figure 2.  Illustration of the co-assembly of the π-structural unit (GluCN), thioflavin T (ThT) and carboxylic cyanostilbene derivative (CAN), respectively[30]

    图 3  手性稀土四面体笼的圆偏振发光和手性记忆效应[35]

    Figure 3.  Circularly polarized luminescence and chiral memory effect of chiral rare earth tetrahedral cage[35]

    图 4  手性MOF的CPL示意图[41]

    Figure 4.  Schematic illustration of CPL with chiral MOF[41]

    图 5  Cu14纳米团簇的合成及其手性特征[45]

    Figure 5.  Synthesis and chirality of Cu14 nanoclusters[45]

    图 6  钙钛矿纳米晶体手性示意图[48]

    Figure 6.  Illustration of the origin of chirality in perovskite nanocrystals[48]

    图 7  可能的自组装路线示意图[57]

    Figure 7.  Illustration of a possible self-assembly route[57]

    图 8  (a)对映体(S)-BPPOACZ和(R)-BPPOACZ的化学结构。(b)(R)-BPPOACZ的单晶结构。(c)(R)-BPPOACZ的HOMO和LUMO轨道分布示意图[61]

    Figure 8.  (a) Chemical structures of the enantiomers (S)-BPPOACZ and (R)-BPPOACZ. (b) Single crystal structure of (R)-BPPOACZ. (c) HOMO and LUMO orbital distributions of (R)-BPPOACZ[61].

    Baidu
  • [1] LI ZH CH, LIU W W, CHENG H, et al. Spin-selective transmission and devisable chirality in two-layer metasurfaces[J]. Scientific Reports, 2017, 7: 8204. doi: 10.1038/s41598-017-08527-4
    [2] TAMURA K, SCHIMMEL P R. Chiral-selective aminoacylation of an RNA minihelix: mechanistic features and chiral suppression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(37): 13750-13752. doi: 10.1073/pnas.0606070103
    [3] 李猛, 林伟彬, 房蕾, 等. 手性有机小分子圆偏振发光的研究进展[J]. 化学学报,2017,75(12):1150-1163. doi: 10.6023/A17090440

    LI M, LIN W B, FANG L, et al. Recent progress on circularly polarized luminescence of chiral organic small molecules[J]. Acta Chimica Sinica, 2017, 75(12): 1150-1163. (in Chinese) doi: 10.6023/A17090440
    [4] ZINNA F, PASINI M, GALEOTTI F, et al. Design of lanthanide-based OLEDs with remarkable circularly polarized electroluminescence[J]. Advanced Functional Materials, 2017, 27(1): 1603719. doi: 10.1002/adfm.201603719
    [5] SONG F Y, XU Z, ZHANG Q SH, et al. Highly efficient circularly polarized electroluminescence from aggregation-induced emission luminogens with amplified chirality and delayed fluorescence[J]. Advanced Functional Materials, 2018, 28(17): 1800051. doi: 10.1002/adfm.201800051
    [6] YANG Y, DA COSTA R C, FUCHTER M J, et al. Circularly polarized light detection by a chiral organic semiconductor transistor[J]. Nature Photonics, 2013, 7(8): 634-638. doi: 10.1038/nphoton.2013.176
    [7] TANG ZH L, IIDA H, HU H Y, et al. Remarkable enhancement of the enantioselectivity of an organocatalyzed asymmetric henry reaction assisted by helical poly(phenylacetylene)s bearing cinchona alkaloid pendants via an amide linkage[J]. ACS Macro Letters, 2012, 1(2): 261-265. doi: 10.1021/mz200161s
    [8] KITAGAWA Y, WADA S, ISLAM M D J, et al. Chiral lanthanide lumino-glass for a circularly polarized light security device[J]. Communications Chemistry, 2020, 3: 119. doi: 10.1038/s42004-020-00366-1
    [9] SANG Y T, HAN J L, ZHAO T H, et al. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application[J]. Advanced Materials, 2020, 32(41): 1900110. doi: 10.1002/adma.201900110
    [10] 李军峰, 刘训华, 陈瑛, 等. 基于手性环己二胺稀土Eu(Ⅲ)高分子在能量传递和圆偏振荧光调控方面的研究[J]. 高分子学报,2015(3):252-258. doi: 10.11777/j.issn1000-3304.2015.14245

    LI J F, LIU X H, CHEN Y, et al. Tuning circularly polarized luminescence and energy transfer of Eu(Ⅲ)-grafting(R, R)-1, 2-aminocyclohexane polymers based on variable alkyl chains[J]. Acta Polymerica Sinica, 2015(3): 252-258. (in Chinese) doi: 10.11777/j.issn1000-3304.2015.14245
    [11] LIU M H, ZHANG L, WANG T Y. Supramolecular chirality in self-assembled systems[J]. Chemical Reviews, 2015, 115(15): 7304-7397. doi: 10.1021/cr500671p
    [12] LIU J ZH, SU H M, MENG L M, et al. What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission[J]. Chemical Science, 2012, 3(9): 2737-2747. doi: 10.1039/c2sc20382k
    [13] XU L, WANG CH, LI Y X. et al. Crystallization-driven asymmetric helical assembly of conjugated block copolymers and the aggregation induced white-light emission and circularly polarized luminescence[J]. Angewandte Chemie International Edition, 2020, 59(38): 16675-16682. doi: 10.1002/anie.202006561
    [14] LI F, WANG Y X, Wang Z Y, et al. Red colored CPL emission of chiral 1, 2-DACH-based polymers via chiral transfer of the conjugated chain backbone structure[J]. Polymer Chemistry, 2015, 6(38): 6802-6805. doi: 10.1039/C5PY01148E
    [15] ZHANG SH W, SHENG Y, WEI G, et al. Aggregation-induced circularly polarized luminescence of an (R)-binaphthyl-based AIE-active chiral conjugated polymer with self-assembled helical nanofibers[J]. Polymer Chemistry, 2015, 6(13): 2416-2422. doi: 10.1039/C4PY01689K
    [16] WANG Y X, LI Y ZH, LIU SH, et al. Regulating circularly polarized luminescence signals of chiral binaphthyl-based conjugated polymers by tuning dihedral angles of binaphthyl moieties[J]. Macromolecules, 2016, 49(15): 5444-5451. doi: 10.1021/acs.macromol.6b00883
    [17] DENG M, MUKTHAR N F M, SCHLEY N D, et al. Yellow circularly polarized luminescence from C1-symmetrical copper(I) complexes[J]. Angewandte Chemie International Edition, 2020, 59(3): 1228-1231. doi: 10.1002/anie.201913672
    [18] HUANG Z ZH, MA X. Tailoring tunable luminescence via supramolecular assembly strategies[J]. Cell Reports Physical Science, 2020, 1(8): 100167. doi: 10.1016/j.xcrp.2020.100167
    [19] KUMAR J, NAKASHIMA T, KAWAI T. Circularly polarized luminescence in chiral molecules and supramolecular assemblies[J]. The Journal of Physical Chemistry Letters, 2015, 6(17): 3445-3452. doi: 10.1021/acs.jpclett.5b01452
    [20] HU M, FENG H T, YUAN Y X, et al. Chiral AIEgens-chiral recognition, CPL materials and other chiral applications[J]. Coordination Chemistry Reviews, 2020, 416: 213329. doi: 10.1016/j.ccr.2020.213329
    [21] ZHAO T H, HAN J L, DUAN P F, et al. New perspectives to trigger and modulate circularly polarized luminescence of complex and aggregated systems: energy transfer, photon upconversion, charge transfer, and organic radical[J]. Accounts of Chemical Research, 2020, 53(7): 1279-1292. doi: 10.1021/acs.accounts.0c00112
    [22] DUDEK S P, POUDEROIJEN M, ABBEL R, et al. Synthesis and energy-transfer properties of hydrogen-bonded oligofluorenes[J]. Journal of the American Chemical Society, 2005, 127(33): 11763-11768. doi: 10.1021/ja052054k
    [23] MARANGONI T, BONIFAZI D. Nano- and microstructuration of supramolecular materials driven by H-bonded uracil·2, 6-diamidopyridine complexes[J]. Nanoscale, 2013, 5(19): 8837-8851. doi: 10.1039/c3nr01711g
    [24] ZHANG T, CHEN H, MA X, et al. Amorphous 2-bromocarbazole copolymers with efficient room-temperature phosphorescent emission and applications as encryption ink[J]. Industrial &Engineering Chemistry Research, 2017, 56(11): 3123-3128.
    [25] XING P Y, LI Y X, XUE S X, et al. Occurrence of chiral nanostructures induced by multiple hydrogen bonds[J]. Journal of the American Chemical Society, 2019, 141(25): 9946-9954. doi: 10.1021/jacs.9b03502
    [26] WANG ZH E, HAO A Y, XING P Y. Chiroptical helices of N-terminal aryl amino acids through orthogonal noncovalent interactions[J]. Angewandte Chemie International Edition, 2020, 59(28): 11556-11565. doi: 10.1002/anie.202003351
    [27] YANG L, WANG F, AUPHEDEOUS D I Y, et al. Achiral isomers controlled circularly polarized luminescence in supramolecular hydrogels[J]. Nanoscale, 2019, 11(30): 14210-14215. doi: 10.1039/C9NR05033G
    [28] YE Q, ZHU D D, XU L Y, et al. The fabrication of helical fibers with circularly polarized luminescence via ionic linkage of binaphthol and tetraphenylethylene derivatives[J]. Journal of Materials Chemistry C, 2016, 4(7): 1497-1503. doi: 10.1039/C5TC04174K
    [29] YUAN X Y, HU M, ZHANG K R, et al. The largest CPL enhancement by further assembly of self-assembled superhelices based on the helical TPE macrocycle[J]. Materials Horizons, 2020. doi: 10.1039/domh01303j
    [30] JI L K, ZHAO Y, TAO M, et al. Dimension-tunable circularly polarized luminescent nanoassemblies with emerging selective chirality and energy transfer[J]. ACS Nano, 2020, 14(2): 2373-2384. doi: 10.1021/acsnano.9b09584
    [31] GOTO T, OKAZAKI Y, UEKI M, et al. Induction of strong and tunable circularly polarized luminescence of nonchiral, nonmetal, low-molecular-weight fluorophores using chiral nanotemplates[J]. Angewandte Chemie International Edition, 2017, 56(11): 2989-2993. doi: 10.1002/anie.201612331
    [32] WANG H, JI X F, LI ZH T, et al. Fluorescent supramolecular polymeric materials[J]. Advanced Materials, 2017, 29(14): 1606117. doi: 10.1002/adma.201606117
    [33] YEUNG C T, YIM K H, WONG H Y, et al. Chiral transcription in self-assembled tetrahedral Eu4L6 chiral cages displaying sizable circularly polarized luminescence[J]. Nature Communications, 2017, 8(1): 1128. doi: 10.1038/s41467-017-01025-1
    [34] WONG K M C, YAM V W W. Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical properties through aggregation behavior[J]. Accounts of Chemical Research, 2011, 44(6): 424-434. doi: 10.1021/ar100130j
    [35] ZHOU Y Y, LI H F, ZHU T Y, et al. A highly luminescent chiral tetrahedral Eu4L4(L')4 cage: chirality induction, chirality memory, and circularly polarized luminescence[J]. Journal of the American Chemical Society, 2019, 141(50): 19634-19643. doi: 10.1021/jacs.9b07178
    [36] ZHU H T ZH, LI Q, SHI B B, et al. Formation of planar chiral platinum triangles via pillar[5]arene for circularly polarized luminescence[J]. Journal of the American Chemical Society, 2020, 142(41): 17340-17345. doi: 10.1021/jacs.0c09598
    [37] TAN Y B, OKAYASU Y, KATAO S, et al. Visible circularly polarized luminescence of octanuclear circular Eu(Ⅲ) helicate[J]. Journal of the American Chemical Society, 2020, 142(41): 17653-17661. doi: 10.1021/jacs.0c08229
    [38] ZHAO T H, HAN J L, JIN X, et al. Enhanced circularly polarized luminescence from reorganized chiral emitters on the skeleton of a zeolitic imidazolate framework[J]. Angewandte Chemie International Edition, 2019, 58(15): 4978-4982. doi: 10.1002/anie.201900052
    [39] LUSTIG W P, WANG F M, TEAT S J, et al. Chromophore-based luminescent metal-organic frameworks as lighting phosphors[J]. Inorganic Chemistry,, 2016, 55(15): 7250-7256. doi: 10.1021/acs.inorgchem.6b00897
    [40] BAUDRON S A. Luminescent metal-organic frameworks based on dipyrromethene metal complexes and BODIPYs[J]. CrystEngComm, 2016, 18(25): 4671-4680. doi: 10.1039/C6CE00450D
    [41] ZHAO T H, HAN J L, JIN X, et al. Dual-mode induction of tunable circularly polarized luminescence from chiral metal-organic frameworks[J]. Research, 2020, 2020: 6452123.
    [42] ZHANG M M, LI K, ZANG S Q. Progress in atomically precise coinage metal clusters with aggregation-induced emission and circularly polarized luminescence[J]. Advanced Optical Materials, 2020, 8(14): 1902152. doi: 10.1002/adom.201902152
    [43] KONG Y J, YAN ZH P, LI S, et al. Photoresponsive propeller-like chiral AIE Copper(I) clusters[J]. Angewandte Chemie International Edition, 2020, 59(13): 5336-5340. doi: 10.1002/anie.201915844
    [44] ZHANG M M, DONG X Y, WANG ZH Y, et al. AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters[J]. Angewandte Chemie International Edition, 2020, 59(25): 10052-10058. doi: 10.1002/anie.201908909
    [45] HAN ZH, DONG X Y, LUO P, et al. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency[J]. Science Advances, 2020, 6(6): eaay0107. doi: 10.1126/sciadv.aay0107
    [46] 周明浩, 姜爽, 张天永, 等. 手性钙钛矿纳米材料的构筑及光电性能[J]. 化学进展,2020,32(4):361-370.

    ZHOU M H, JIANG SH, ZHANG T Y, et al. Construction and optoelectrical properties of chiral perovskite nanomaterials[J]. Progress in Chemistry, 2020, 32(4): 361-370. (in Chinese)
    [47] BILLING D G, LEMMERER A. Bis[(S)-β-phenethylammonium] tribromoplumbate(II)[J]. Acta Crystallographica Section E, 2003, E59(6): m381-m383.
    [48] CHEN W J, ZHANG SH, ZHOU M H, et al. Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals[J]. The Journal of Physical Chemistry Letters, 2019, 10(12): 3290-3295. doi: 10.1021/acs.jpclett.9b01224
    [49] DANG Y Y, LIU X L, SUN Y J, et al. Bulk chiral halide perovskite single crystals for active circular dichroism and circularly polarized luminescence[J]. The Journal of Physical Chemistry Letters, 2020, 11(5): 1689-1696. doi: 10.1021/acs.jpclett.9b03718
    [50] PEDERSEN C J. Cyclic polyethers and their complexes with metal salts[J]. Journal of the American Chemical Society, 1967, 89(26): 7017-7036. doi: 10.1021/ja01002a035
    [51] MA X, TIAN H. Stimuli-responsive supramolecular polymers in aqueous solution[J]. Accounts of Chemical Research, 2014, 47(7): 1971-1981. doi: 10.1021/ar500033n
    [52] SHINKAI S. Calixarenes-the third generation of supramolecules[J]. Tetrahedron, 1993, 49(40): 8933-8968. doi: 10.1016/S0040-4020(01)91215-3
    [53] XUE M, YANG Y, CHI X D, et al. Pillararenes, a new class of macrocycles for supramolecular chemistry[J]. Accounts of Chemical Research, 2012, 45(8): 1294-1308. doi: 10.1021/ar2003418
    [54] CHEN J F, YIN X D, WANG B W, et al. Planar chiral organoboranes with thermoresponsive emission and circularly polarized luminescence: integration of pillar[5]arenes with boron chemistry[J]. Angewandte Chemie International Edition, 2020, 59(28): 11267-11272. doi: 10.1002/anie.202001145
    [55] TONG SH, LI J T, LIANG D D, et al. Catalytic enantioselective synthesis and switchable chiroptical property of inherently chiral macrocycles[J]. Journal of the American Chemical Society, 2020, 142(34): 14432-14436. doi: 10.1021/jacs.0c05369
    [56] HU L Y, LI K, SHANG W L, et al. Emerging cubic chirality in γCD-MOF for fabricating circularly polarized luminescent crystalline materials and the size effect[J]. Angewandte Chemie International Edition, 2020, 59(12): 4953-4958. doi: 10.1002/anie.202000589
    [57] LIANG J Q, GUO P P, QIN X J, et al. Hierarchically chiral lattice self-assembly induced circularly polarized luminescence[J]. ACS Nano, 2020, 14(3): 3190-3198. doi: 10.1021/acsnano.9b08408
    [58] HAN J M, GUO S, LU H, et al. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices[J]. Advanced Optical Materials, 2018, 6(17): 1800538. doi: 10.1002/adom.201800538
    [59] HAN J M, GUO S, WANG J, et al. Circularly polarized phosphorescent electroluminescence from chiral cationic iridium(III) isocyanide complexes[J]. Advanced Optical Materials, 2017, 5(22): 1700359. doi: 10.1002/adom.201700359
    [60] HAN J M, LU H, XU Y N, et al. Concentration-dependent circularly polarized luminescence of chiral cyclometalated platinum(II) complexes for electroluminescence[J]. Journal of Organometallic Chemistry, 2020, 915: 121240. doi: 10.1016/j.jorganchem.2020.121240
    [61] TU ZH L, YAN ZH P, LIANG X, et al. Axially chiral biphenyl compound-based thermally activated delayed fluorescent materials for high-performance circularly polarized organic light-emitting diodes[J]. Advanced Science, 2020, 7(15): 2000804. doi: 10.1002/advs.202000804
    [62] TAO J W, ZOU CH, JIANG H J, et al. Optically ambidextrous reflection and luminescence in self-organized left-handed chiral nematic cellulose nanocrystal films[J]. CCS Chemistry, 2020, 2(5): 932-945.
    [63] ZHAO Y, NIU D, TAN J J, et al. Alkaline-earth metal ion turn-on circularly polarized luminescence and encrypted selective recognition of AMP[J]. Small Methods, 2020, 4(10): 2000493. doi: 10.1002/smtd.202000493
    [64] 李庆祥, 梁鸿宇, 陆学民, 等. 诱导手性圆偏振发光材料的研究进展[J]. 功能高分子学报,2019,32(6):671-682.

    LI Q X, LIANG H Y, LU X M, et al. Recent progress in chiral materials with induced circularly polarized luminescence[J]. Journal of Functional Polymers, 2019, 32(6): 671-682. (in Chinese)
  • 加载中
图(8)
计量
  • 文章访问数:  2337
  • HTML全文浏览量:  804
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-23
  • 修回日期:  2020-11-30
  • 网络出版日期:  2021-01-14
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回
    Baidu
    map