留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of optical wedge demodulation system for fiber Fabry-Perot sensor

ZHANG Xiong-xing LV Wen-tao ZHANG Tian-yang KOU Wan-ying CHEN Qing-qing WANG Wei

张雄星, 吕文涛, 张天阳, 寇琬莹, 陈青青, 王伟. 光纤法珀传感器光楔式解调系统设计[J]. 188bet网站真的吗 , 2021, 14(5): 1259-1272. doi: 10.37188/CO.2020-0204
引用本文: 张雄星, 吕文涛, 张天阳, 寇琬莹, 陈青青, 王伟. 光纤法珀传感器光楔式解调系统设计[J]. 188bet网站真的吗 , 2021, 14(5): 1259-1272. doi: 10.37188/CO.2020-0204
ZHANG Xiong-xing, LV Wen-tao, ZHANG Tian-yang, KOU Wan-ying, CHEN Qing-qing, WANG Wei. Design of optical wedge demodulation system for fiber Fabry-Perot sensor[J]. Chinese Optics, 2021, 14(5): 1259-1272. doi: 10.37188/CO.2020-0204
Citation: ZHANG Xiong-xing, LV Wen-tao, ZHANG Tian-yang, KOU Wan-ying, CHEN Qing-qing, WANG Wei. Design of optical wedge demodulation system for fiber Fabry-Perot sensor[J]. Chinese Optics, 2021, 14(5): 1259-1272. doi: 10.37188/CO.2020-0204

光纤法珀传感器光楔式解调系统设计

详细信息
  • 中图分类号: TH741

Design of optical wedge demodulation system for fiber Fabry-Perot sensor

doi: 10.37188/CO.2020-0204
Funds: Supported by Natural Science Basic Research Project of Shaanxi Province (No. 2020JM-560); Key Scientific Research Project of Education Department of Shaanxi Province (No. 20JS060)
More Information
    Author Bio:

    ZHANG Xiong-xing (1979—), male, born in Xiangyang City, Hubei Province. Master’s degree, associate professor. He is mainly engaged in the research of optical fiber sensing and optoelectronic measurement. E-mail: zhangxiongxing@xatu.edu.cn

    WANG Wei (1973—), male, born in Jiyuan, Henan Province. Doctoral degree, professor. He is mainly engaged in the research of optical fiber sensing and optoelectronic testing. E-mail: wangwei@xatu.edu.cn

    Corresponding author: wangwei@xatu.edu.cn
  • 摘要: 为了实现光纤法布里-珀罗(简称法珀)传感器腔长的解调,提出一种新型光楔式非扫描相关解调系统,对该系统所采用的器件特性及结构进行分析研究。首先,通过模拟不同光谱分布的光源及不同表面反射率的光楔,分析其相关干涉信号并给出系统器件的最优化结构参数。接着通过对比鲍威尔棱镜与柱透镜在线阵CCD上的光强分布特性,实现更均匀的光谱分布。最后,给出解调系统的具体实施方案及数据处理方法。实验结果表明:光源光谱具有高斯分布且谱宽较大及光楔表面反射率$ R = 0.5$ 时,相关干涉信号特征明显,便于解调。最终解调系统实现在60~100 μm腔长范围内误差小于0.025%的解调。这种光楔式非扫描相关解调方案可以实现光纤法珀腔的传感解调,并可以提高不同类型光纤法珀传感器功率适应性。

     

  • 图 1  光纤法珀传感器光楔式解调系统示意图

    Figure 1.  Schematic diagram of optical wedge demodulation system for fiber-optic FP sensor

    图 2  光楔结构示意图

    Figure 2.  Schematic diagram of optical wedge structure

    图 3  3种光谱分布曲线

    Figure 3.  Three kinds of spectral distribution curves

    图 4  不同光谱分布下相关干涉信号输出分布

    Figure 4.  The output light intensity distribution of correlation interference signal under different spectral distributions

    图 5  SLED输出光谱

    Figure 5.  Output spectrum of SLED

    图 6  (a)柱透镜和(b)鲍威尔棱镜光强分布效果图

    Figure 6.  Light intensity distributions of (a) cylindrical lens and (b) Powell prism

    图 7  柱透镜和鲍威尔棱镜光强分布经CCD探测基底信号图

    Figure 7.  Light intensity distributions of the background signals from cylindrical lens and Powell prism detected by CCD

    图 8  不同表面反射率的光楔的相关干涉信号对比图

    Figure 8.  Comparison of correlation interference signals obtained by the optical wedges with different surface reflectivities

    图 9  光纤法珀传感器解调系统的光楔结构。(a)光楔制作示意图;(b)CCD结合光楔实物图

    Figure 9.  Optical wedge structure of fiber-optic FP sensor demodulation system. (a) Schematic diagram of optical wedge fabrication; (b) combination of CCD and optical wedge

    图 10  光纤法珀传感器示意图

    Figure 10.  Schematic diagram of fiber-optic FP sensor

    图 11  光纤法珀传感器光楔式解调实验系统。(a) 整体结构 (b) 传感器细节图 (c) 暗盒内部结构

    Figure 11.  Experimental optical wedge demodulation system for the fiber-optic FP sensor. (a) Overall structure; (b) detailed picture of the sensor; (c) internal structure of dark box

    图 12  光纤法珀传感器光楔式解调系统CCD采集信号图

    Figure 12.  Signals collected by CCD in the optical wedge demodulation system for fiber-optic FP sensor

    图 13  光纤法珀传感器光楔式解调系统测试结果图

    Figure 13.  Test results of optical wedge demodulation system for fiber-optic FP sensor

    图 14  不同光源功率下采用鲍威尔棱镜及柱透镜的解调系统的解调范围对比图

    Figure 14.  Comparison of demodulation ranges of the demodulation systems using Powell prism and cylindrical lens under different light source powers

    表  1  Test data

    Table  1.   Test data

    Light source
    power/mW
    Demodulation range of
    Powell prism/μm
    Demodulation range of
    cylindrical lens/μm
    559.988~100.163
    658.950~97.8368.612~84.542
    759.728~100.53165.757~86.286
    859.728~100.53165.776~94.506
    959.733~101.99365.637~94.512
    1060.217~100.73964.856~93.776
    1160.306~98.51465.103~95.525
    1259.601~98.96663.339~94.497
    1359.844~98.81763.699~95.04
    下载: 导出CSV
    Baidu
  • [1] FENG W L, PENG J, YU J H, et al. Double Fabry-Pérot fiber optic temperature sensor based on end-face corrosion[J]. Optics and Precision Engineering, 2019, 27(4): 766-770. (in Chinese) doi: 10.3788/OPE.20192704.0766
    [2] XU N, DAI M. Design of distributed optical fiber sensor for temperature and pressure measurement[J]. Chinese Optics, 2015, 8(4): 629-635. (in Chinese) doi: 10.3788/co.20150804.0629
    [3] POEGGEL S, TOSI D, FUSCO F, et al. Fiber-optic EFPI pressure sensors for in vivo urodynamic analysis[J]. IEEE Sensors Journal, 2014, 14(7): 2335-2340. doi: 10.1109/JSEN.2014.2310392
    [4] CHEN Q CH, ZHAO H, ZHANG W CH. External oil cavity coupled with EFPI partial discharge ultrasonic detection sensor[J]. Optics and Precision Engineering, 2020, 28(7): 1471-1479. (in Chinese) doi: 10.37188/OPE.20202807.1471
    [5] ZHU T, KE T, RAO Y J, et al. Miniature all-fiber Fabry-Perot interferometric high temperature sensor based on a thin film[J]. Optics and Precision Engineering, 2010, 18(5): 1054-1059. (in Chinese)
    [6] XIE J H, WANG F Y, PAN Y, et al. High resolution signal-processing method for extrinsic Fabry-Perot interferometric sensors[J]. Optical Fiber Technology, 2015, 22: 1-6. doi: 10.1016/j.yofte.2014.11.010
    [7] ZHANG Y N, HUANG J, LAN X W, et al. Simultaneous measurement of temperature and pressure with cascaded extrinsic Fabry-Perot interferometer and intrinsic Fabry-Perot interferometer sensors[J]. Optical Engineering, 2014, 53(6): 067101. doi: 10.1117/1.OE.53.6.067101
    [8] JIANG X F, LIN CH, XIE H H, et al. Optic fiber MEMS pressure sensor based on white light interferometry[J]. Acta Photonica Sinica, 2014, 43(10): 1006003. (in Chinese) doi: 10.3788/gzxb20144310.1006003
    [9] MA G H, ZHANG J B, ZHANG H, et al. Resonant mode of Fabry-Perot microcavity regulated by metal surface plasmons[J]. Chinese Optics, 2019, 12(3): 649-662. (in Chinese) doi: 10.3788/co.20191203.0649
    [10] CHEN Q Q, TANG Y, WANG K N, et al. Characteristic analysis of correlation interference signals in optical wedge type fiber Fabry-Perot sensors[J]. Laser &Optoelectronics Progress, 2018, 55(11): 110603. (in Chinese)
    [11] HAN M, ZHANG Y, SHEN F B, et al. Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors[J]. Optics Letters, 2004, 29(15): 1736-1738. doi: 10.1364/OL.29.001736
    [12] YOSHINO T, KUROSAWA K, ITOH K, et al. Fiber-optic Fabry-Perot interferometer and its sensor applications[J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(10): 1612-1621. doi: 10.1109/TMTT.1982.1131298
    [13] LI J SH, ZHU Y, WANG N, et al. An algorithm for improving the signal stability of the fast fiber optic Fabry-Perot nonscanning correlation demodulation system[J]. Acta Photonica Sinica, 2015, 44(1): 0106005. (in Chinese) doi: 10.3788/gzxb20154401.0106005
    [14] WANG W, TANG Y, ZHANG X X, et al. Elliptical-fitting cavity length demodulation algorithm for compound fiber-optic Fabry-Perot pressure sensor with short cavity[J]. Acta Optica Sinica, 2019, 39(6): 0606001. (in Chinese) doi: 10.3788/AOS201939.0606001
    [15] ZHAO Y, WANG D H. Mathematical model of optical wedges for cross-correlation demodulation of cavity length of optical fiber Fabry-Pérot sensors[J]. Acta Optica Sinica, 2011, 31(1): 0106007. (in Chinese) doi: 10.3788/AOS201131.0106007
    [16] WU Y, XIA L, CAI N, et al. A highly precise demodulation method for fiber Fabry-Perot cavity through spectrum reconstruction[J]. IEEE Photonics Technology Letters, 2018, 30(5): 435-438. doi: 10.1109/LPT.2017.2787098
    [17] VOLKOV P V, GORYUNOV A V, LUK’YANOV A Y, et al. Fiber-optic temperature sensor based on low-coherence interferometry without scanning[J]. Optik, 2013, 124(15): 1982-1985. doi: 10.1016/j.ijleo.2012.06.043
    [18] MA ZH B, GUO T X, ZHANG T Y, et al. Compact Powell-lens-based low-coherence correlation interrogation system for fiber-optic Fabry-Perot sensors[J]. IEEE Photonics Journal, 2019, 11(4): 7102111.
    [19] CAI F H, TANG R N, WANG SH W, et al. A compact line-detection spectrometer with a Powell lens[J]. Optik, 2018, 155: 267-272. doi: 10.1016/j.ijleo.2017.11.022
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  1345
  • HTML全文浏览量:  564
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 修回日期:  2021-01-07
  • 网络出版日期:  2021-08-12
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回
    Baidu
    map