-
摘要: 双色滤光片在其任意一个几何位置上,均能够有效透过两个精确控制的光谱通道,它可以提升光学探测装置对目标的识别能力。本文选用单晶Ge作为基片,Ge和ZnSe分别作为高低折射率膜层材料,研制了一种包含3.2~3.8 μm(通道1)和4.9~5.4 μm(通道2)两个通道的红外双色滤光片。在高真空中以热蒸发的方式镀制了滤光片的光学膜层,采用单波长的极值百分比光学监控(POEM)方法控制膜层的光学厚度。在100 K低温下,通道1的平均透射率为94.2%,顶部波纹幅度为5.7%;通道2的平均透射率为96.5%,顶部波纹幅度为0.6%。在两个通道之间(4.0~4.7 μm)的截止区域内,平均透射率小于0.16%。该红外双色滤光片具有良好的光学稳定性,有利于高速运动目标的识别。Abstract: The dual-color (dual band-pass) filter is a new type of optical element that includes two precisely controlled spectral channels at any geometric position and can improve the target recognition ability of optical detection devices. Single crystal Ge is used as a substrate, and Ge and ZnSe are used as high (H) and low (L) reflective index thin film materials, respectively. An infrared dual-color filter is designed with two band-pass channels: 3.2~3.8 μm (channel 1) and 4.9~5.4 μm (channel 2). Thin films are fabricated by thermal evaporation in a high vacuum chamber, and the film thickness are monitored using the POEM (Percent of Optical Extreme Monitoring) strategy. At a working temperature of 100 K, the average transmittance of channel 1 was 94.2%, and its top ripple amplitude was 5.7%; the average transmittance of channel 2 was 96.5%, and its top ripple amplitude was 0.6%. In the cut-off range between the two channels (4.0~4.7 μm), the average transmittance was no more than 0.16%. The infrared dual-color filter has good optical stability, which is conducive to the recognition of high-speed moving targets.
-
Key words:
- optical thin film /
- dual-color filter /
- infrared /
- cryogenic spectrum
-
表 1 Ge和ZnSe薄膜沉积工艺参数
Table 1. Deposition parameters of the Ge and ZnSe films
deposition rate/
(nm·s−1)chamber pressure/
(10−4Pa)rotation rate/
(rad·min−1)Ge layers 0.6 5~8 30 ZnSe layers 2 5~8 30 表 2 两个通带的边缘陡度和顶部波纹振幅
Table 2. Edge steepness and top ripple amplitudes of the two channels
Edge steepness
of the left sideEdge steepness
of the right sideTop ripple
amplitudeChannel 1 (3.2~3.8 μm) 3.5% 2.1% 5.7% Channel 2 (4.9~5.4 μm) 2.7% 2.2% 0.6% 表 3 温度由300 K变化至100 K时两个通带半峰波长位置的移动情况
Table 3. Half-peak wavelength point shift of the two channels when the temperature changes from 300 K to 100 K
(nm) Left side T0.5P
wavelength point shiftRight side T0.5P
wavelength point shiftChannel 1
(3.2~3.8 μm)−43 −49 Channel 2
(4.9~5.4 μm)−67 −73 -
[1] LI P, CAI Q, ZHANG J G, et al. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter[J]. Optics Express, 2019, 27(13): 17859-17867. doi: 10.1364/OE.27.017859 [2] 李宏光, 杨鸿儒, 薛战理, 等. 窄带光谱滤光法探测低温黑体太赫兹辐射[J]. 光学 精密工程,2013,21(6):1410-1416. doi: 10.3788/OPE.20132106.1410LI H G, YANG H R, XUE ZH L, et al. Terahertz radiation detection of low temperature blackbody based on narrowband spectral filter method[J]. Optics and Precision Engineering, 2013, 21(6): 1410-1416. (in Chinese) doi: 10.3788/OPE.20132106.1410 [3] INOUE Y, HAMADA T, HASEGAWA M, et al. Two-layer anti-reflection coating with mullite and polyimide foam for large-diameter cryogenic infrared filters[J]. Applied Optics, 2016, 55(34): D22-D28. doi: 10.1364/AO.55.000D22 [4] 乔铁英, 蔡立华, 李宁, 等. 基于红外辐射特性系统实现对面目标测量[J]. 中国光学,2018,11(5):804-811. doi: 10.3788/co.20181105.0804QIAO T Y, CAI L H, LI N, et al. Opposite target measurement based on infrared radiation characteristic system[J]. Chinese Optics, 2018, 11(5): 804-811. (in Chinese) doi: 10.3788/co.20181105.0804 [5] NOULKOW N, TAUBERT R D, MEINDL P, et al. Infrared filter radiometers for thermodynamic temperature determination below 660 °C[J]. International Journal of Thermophysics, 2009, 30(1): 131-143. doi: 10.1007/s10765-008-0458-1 [6] 朱旭波, 彭震宇, 曹先存, 等. InAs/GaSb二类超晶格中/短波双色红外焦平面探测器[J]. 红外与金宝搏188软件怎么用 工程,2019,48(11):1104001. doi: 10.3788/IRLA201948.1104001ZHU X B, PENG ZH Y, CAO X C, et al. Mid-/short-wavelength dual-color infrared focal plane arrays based on type-II InAs/GaSb superlattice[J]. Infrared and Laser Engineering, 2019, 48(11): 1104001. (in Chinese) doi: 10.3788/IRLA201948.1104001 [7] JEONG M Y, MANG J Y. Continuously tunable optical notch filter and band-pass filter systems that cover the visible to near-infrared spectral ranges[J]. Applied Optics, 2018, 57(8): 1962-1966. doi: 10.1364/AO.57.001962 [8] TIKHONRAVOV A V, TRUBETSKOV M K, DEBELL G W. Application of the needle optimization technique to the design of optical coatings[J]. Applied Optics, 1996, 35(28): 5493-5508. doi: 10.1364/AO.35.005493 [9] WANG Y Z, LIU D Q, ZHANG F SH. Design and fabrication of bi-color multilayer filters for mid- and far- infrared application[J]. Proceedings of SPIE, 2005, 5640: 42-48. doi: 10.1117/12.572842 [10] 蔡渊, 周晟, 刘定权. 基于组合Fabry-Perot膜系的中波红外双色滤光片设计[J]. 光学学报,2016,36(2):0222004. doi: 10.3788/AOS201636.0222004CAI Y, ZHOU SH, LIU D Q. Design of dual-band-pass optical filter based on combination of fabry-perot coatings in mid-infrared band[J]. Acta Optica Sinica, 2016, 36(2): 0222004. (in Chinese) doi: 10.3788/AOS201636.0222004 [11] WILLEY R R. Simulation comparisons of monitoring strategies in narrow bandpass filters and antireflection coatings[J]. Applied Optics, 2014, 53(4): A27-A34. doi: 10.1364/AO.53.000A27 [12] JANFAZA M, MANSOURI-BIRJANDI M A, TAVOUSI A. Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on Bragg gratings[J]. Optics Communications, 2019, 440: 75-82. doi: 10.1016/j.optcom.2019.01.062 [13] STOLBERG-ROHR T, HAWKINS G J. Spectral design of temperature-invariant narrow bandpass filters for the mid-infrared[J]. Optics Express, 2015, 23(1): 580-596. doi: 10.1364/OE.23.000580 [14] NOULKOW N, TAUBERT RD, MEINDL P, et al.. High-accuracy thermodynamic temperature measurements with near infrared filter radiometers[C]. Proceedings of the 10th International Conference on Infrared Sensors & Systems, Numberg, 2008: 219-224. [15] 申振峰. 特定折射率材料及光学薄膜制备[J]. 中国光学,2013,6(6):900-905.SHEN ZH F. Preparation of specific refractive index material and optical thin films[J]. Chinese Optics, 2013, 6(6): 900-905. (in Chinese) [16] LEMKE D, BÖHM A, DE BONIS F, et al. Cryogenic filter- and spectrometer wheels for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST)[J]. Proceedings of SPIE, 2006, 6273: 627324. doi: 10.1117/12.671230 [17] INOUE Y, MATSUMURA T, HAZUMI M, et al. Cryogenic infrared filter made of alumina for use at millimeter wavelength[J]. Applied Optics, 2014, 53(9): 1727-1733. doi: 10.1364/AO.53.001727 [18] HOU H G, HUSSAIN S, SHAO H CH, et al. Experimental insights on factors influencing sensitivity of thin film narrow band-pass filters[J]. Journal of Nanoelectronics and Optoelectronics, 2019, 14(11): 1548-1554. doi: 10.1166/jno.2019.2663 [19] 白胜元, 顾培夫, 刘旭, 等. 薄膜滤光片的光学稳定性研究[J]. 光子学报,2001,30(5):576-580.BAI SH Y, GU P F, LIU X, et al. Optical stability of thin film filters[J]. Acta Photonica Sinica, 2001, 30(5): 576-580. (in Chinese)