留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体 器系统输出混沌 研究进展

匡尚奇,郭祥帅,冯玉玲,李博涵,张依宁,于萍,庞爽

downloadPDF
匡尚奇, 郭祥帅, 冯玉玲, 李博涵, 张依宁, 于萍, 庞爽. 半导体 器系统输出混沌 研究进展[J]. , 2021, 14(5): 1133-1145. doi: 10.37188/CO.2020-0216
引用本文: 匡尚奇, 郭祥帅, 冯玉玲, 李博涵, 张依宁, 于萍, 庞爽. 半导体 器系统输出混沌 研究进展[J]. , 2021, 14(5): 1133-1145.doi:10.37188/CO.2020-0216
KUANG Shang-qi, GUO Xiang-shuai, FENG Yu-ling, LI Bo-han, ZHANG Yi-ning, YU Ping, PANG Shuang. Research progress of optical chaos in semiconductor laser systems[J]. Chinese Optics, 2021, 14(5): 1133-1145. doi: 10.37188/CO.2020-0216
Citation: KUANG Shang-qi, GUO Xiang-shuai, FENG Yu-ling, LI Bo-han, ZHANG Yi-ning, YU Ping, PANG Shuang. Research progress of optical chaos in semiconductor laser systems[J].Chinese Optics, 2021, 14(5): 1133-1145.doi:10.37188/CO.2020-0216

半导体 器系统输出混沌 研究进展

doi:10.37188/CO.2020-0216
基金项目:吉林省教育厅科学研究规划项目(No. JJKH20200728KJ);吉林省科技发展计划项目(No.20190201135JC)
详细信息
    作者简介:

    匡尚奇(1981—),男,吉林长春人,博士,副教授,硕士生导师,2004年、2009年于吉林大学分别获得学士、博士学位,主要从事量子光学与光学薄膜方面的研究,E-mail:ksq@cust.edu.cn

    郭祥帅(1997—),男,天津人,硕士研究生,2019年于齐齐哈尔大学获得学士学位,主要从事半导体 器混沌方面的研究,E-mail:1114878977@qq.com

    冯玉玲(1965—),女,吉林四平人,博士,教授,博士生导师,1988年于吉林大学获得学士学位,2009年于长春理工大学获得博士学位,主要从事光学混沌方面的研究,E-mail:FYLCUST@163.com

  • 中图分类号:O415

Research progress of optical chaos in semiconductor laser systems

Funds:Supported by Scientific Research Planning Project of Education Department of Jilin Province (No. JJKH20200728KJ); Science and Technology Development Plan Project of Jilin Province (No. 20190201135JC)
More Information
  • 摘要:混沌 由于其类噪声的随机性和优良的抗干扰性,广泛应用于混沌保密通讯、 雷达、光学检测等方面,而且半导体 器自身体积小且结构稳定,成为产生混沌 的主要 器之一。但是,常规光反馈结构的半导体 器系统输出的混沌 信号带宽较窄且存在延时特征,这严重影响了混沌 的应用。针对半导体 器系统的上述问题,本文综合介绍了降低延时特征和优化混沌 带宽的研究进展,对混沌保密通讯十分重要的混沌 的同步性研究进展和半导体 器系统输出的混沌 在应用方面的研究进行了总结,并最终对半导体 器系统输出的混沌 的未来发展与应用前景进行展望。

  • 图 1(a) 采用随机分布光栅反馈装置示意图;(b) 在光纤随机光栅中不同偏振情况下TDS的值随反馈比的变化[27]

    Figure 1.(a) Schematic diagram of a device receiving feedback from a randomly distributed grating; (b) TDS values varying with the feedback ratio under different polarizations in FBG[27]

    图 2(a)光学时间透镜处理混沌 装置示意图;(b) 光学时间透镜模块输出混沌信号的有效带宽与相位调制指数的关系[30]

    Figure 2.(a) Schematic diagram of the device using optical time lens to process chaotic laser device; (b) efficient bandwidth of the chaotic signal outputted by the optical time lens module versus the phase modulation index[30]

    图 3(a)具有光注入的散射反馈半导体 器系统装置示意图;(b)外腔反馈延迟的相关系数与光纤长度的关系(蓝线),红线表示混沌光信号本身的相关噪底[35]

    Figure 3.(a)Schematic diagram of a scattering feedback semiconductor laser system with light injection; (b) correlation coefficient at the external cavity feedback delay as a function of the fiber length, which is represented by the blue line, the red line represents the correlation noise floor of the chaotic light signal itself[35]

    图 4(a)具有外光注入的双路光反馈的半导体 系统装置示意图;(b)两种系统输出混沌 的延时特征值随滤波器带宽的变化[38]

    Figure 4.(a) Schematic diagram of a semiconductor laser system with dual optical feedback under external light injection; (b) the time delay characteristic values varying with the filter bandwidth in the two systems[38]

    图 5(a) 使用多模式SRL的基于光学混沌的同步和通信的示意图;(b)相关系数与相对失配率Δ的关系[39]

    Figure 5.(a) Schematic diagram for optical chaos-based synchronization and communication using multimode SRL; (b) correlation index as a function of the relative mismatch ration Δ[39]

    图 6(a)具有时滞的互耦合半导体 器的模型,τ为光的传播延迟时间;(b) 实线与虚线分别表示 器1与 器2成为局部领先者的概率[49]

    Figure 6.Model for mutually-coupled semiconductor lasers with a time delay,τis the propagation delay time of the light; (b) the solid line and the dotted line respectively represent the probability that laser 1 or 2 is locally the leader[49]

    图 7(a) 二极管的三维混沌水下 雷达系统原理图;(b)清洁水中淹没运动目标的相关迹线[53]

    Figure 7.(a) Schematic setup of the 3D chaos underwater lidar system with a laser diode; (b) correlation traces of a submerged moving target in clean water[53]

    图 8(a)探测系统示意图;(b)混沌 经空杯、水和脂肪乳液的互相关峰值[13]

    Figure 8.(a) Schematic of the detection system; (b) the cross-correlation peaks of chaotic laser passing through the empty cup, water and fat emulsion[13]

    表 1单 器混沌 性能优化

    Table 1.Optimization of chaos in the laser system

    Research institute Parameter Methods for improvement Evaluation function
    Ecole Supérieured’Electricité τ,kap \ ACF[15], DMI[15]
    Ecole Supérieured’Electricité τ,kap,J \ ACF[15,], DMI[15]
    Xidian University kap,τ,kpm electronic component ACF[15], PE[16]
    City University of Hong Kong Δf,kap change optical feedback structure ACF[15], BW[17]
    National Tsing Hua University kap signal processing ACF[15], DMI[15]
    Bangor University J change optical feedback structure BW[17]
    Université Paris-Saclay kap,τ change optical feedback structure BW[17]
    Taiyuan University of Technology α \ ACF[15], LPE[19]
    Changchun University of Science and Technology τ,kap,J,B electronic component ACF[15], BW[17]
    University of Ottawa kap change optical feedback structure ACF[15]
    Taiyuan University of Technology kap,J signal processing ACF[15], PE[16]
    下载: 导出CSV

    表 2多个 器系统输出混沌 性能优化

    Table 2.Optimization of chaos in systems composed of multiple lasers

    Research Institutes Parameters Methods Evaluation functions
    Information Engineering University J1,J2f,kinj \ ACF[15], DMI[15]
    Taiyuan University of Technology Δf,kinj \ BW[17]
    Yantai University kinj,kap,α,ε change feedback structure ACF[15]
    Taiyuan University of Technology \ change feedback structure ACF[15]
    University of Electronic Science and Technology kpm electronic component ACF[15], DMI[15]
    Changchun University of Science and Technology τ,kinj,kap,J,Λ electronic component ACF[15], DMI[15], BW[17]
    Changchun University of Science and Technology kinj,kap,J, electronic component ACF[15], BW[17]
    下载: 导出CSV
  • [1] MAIMAN T H, HOSKINS R H, D’HAENENS I J,et al. Stimulated optical emission in fluorescent solids. Ⅱ. Spectroscopy and stimulated emission in ruby[J].Physical Review, 1961, 123(4): 1151-1157.doi:10.1103/PhysRev.123.1151
    [2] LORENZ E N. Deterministic nonperiodic flow[J].Journal of the Atmospheric Sciences, 1963, 20(2): 130-141.doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    [3] WEISS C O, GODONE A, OLAFSSON A. Routes to chaotic emission in a cw He-Ne laser[J].Physical Review A, 1983, 28(2): 892-895.doi:10.1103/PhysRevA.28.892
    [4] MUKAI T, OTSUKA K. New route to optical chaos: Successive-subharmonic-oscil-lation cascade in a semiconductor laser coupled to an external cavity[J].Physical Review Letters, 1985, 55(17): 1711-1714.doi:10.1103/PhysRevLett.55.1711
    [5] LAVROV R, PEIL M, JACQUOT M,et al. Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization[J].Physical Review E, 2009, 80(2): 026207.doi:10.1103/PhysRevE.80.026207
    [6] 孙胜明, 范杰, 徐莉, 等. 锥形半导体 器研究进展[J]. 中国光学,2019,12(1):48-58.doi:10.3788/co.20191201.0048

    SUN SH M, FAN J, XU L,et al. Progress of tapered semiconductor diode lasers[J].Chinese Optics, 2019, 12(1): 48-58. (in Chinese)doi:10.3788/co.20191201.0048
    [7] LANG R, KOBAYASHI K. External optical feedback effects on semiconductor injection laser properties[J].IEEE Journal of Quantum Electronics, 1980, 16(3): 347-355.doi:10.1109/JQE.1980.1070479
    [8] TKACH R, CHRAPLYVY A. Regimes of feedback effects in 1.5 μm distributed feedback lasers[J].Journal of Lightwave Technology, 1986, 4(11): 1655-1661.doi:10.1109/JLT.1986.1074666
    [9] SIMPSON T B, LIU J M, GAVRIELIDES A,et al. Period-doubling cascades and chaos in a semiconductor laser with optical injection[J].Physical Review A, 1995, 51(5): 4181-4185.doi:10.1103/PhysRevA.51.4181
    [10] TANG S, LIU J M. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback[J].IEEE Journal of Quantum Electronics, 2001, 37(3): 329-336.doi:10.1109/3.910441
    [11] ZHANG M J, JI Y N, ZHANG Y N,et al. Remote radar based on chaos generation and radio over fiber[J].IEEE Photonics Journal, 2014, 6(5): 7902412.
    [12] ARGYRIS A, SYVRIDIS D, LARGER L,et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J].Nature, 2005, 438(7066): 343-346.doi:10.1038/nature04275
    [13] 吕艺辉, 杨玲珍, 李佳, 等. 混沌 实现异质物大小和位置的光学检测[J]. 光学技术,2020,46(2):146-151.

    LV Y H, YANG L ZH, LI J,et al. Optical detection of the size and position of foreign object with chaotic laser[J].Optical Technique, 2020, 46(2): 146-151. (in Chinese)
    [14] 乔丽君, 杨强, 柴萌萌, 等. 混沌半导体 器研究进展[J]. 应用科学学报,2020,38(4):595-611.doi:10.3969/j.issn.0255-8297.2020.04.006

    QIAO L J, YANG Q, CHAI M M,et al. Progress in chaotic semiconductor lasers[J].Journal of Applied Sciences, 2020, 38(4): 595-611. (in Chinese)doi:10.3969/j.issn.0255-8297.2020.04.006
    [15] UDALTSOV V S, LARGER L, GOEDGEBUER J P,et al. Time delay identification in chaotic cryptosystems ruled by delay-differential equations[J].Journal of Optical Technology, 2005, 72(5): 373-377.doi:10.1364/JOT.72.000373
    [16] LI N Q, PAN W, LOCQUET A,et al. Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection[J].Optics Letters, 2015, 40(19): 4416-4419.doi:10.1364/OL.40.004416
    [17] LIN F Y, LIU J M. Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback[J].Optics Communications, 2003, 221(1-3): 173-180.doi:10.1016/S0030-4018(03)01466-4
    [18] LIN F Y, CHAO Y K, WU T C. Effective bandwidths of broadband chaotic signals[J].IEEE Journal of Quantum Electronics, 2012, 48(8): 1010-1014.doi:10.1109/JQE.2012.2198195
    [19] KANNO K, UCHIDA A. Consistency and complexity in coupled semiconductor lasers with time-delayed optical feedback[J].Physical Review E, 2012, 86(6): 066202.doi:10.1103/PhysRevE.86.066202
    [20] RONTANI D, LOCQUET A, SCIAMANNA M,et al. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback[J].Optics Letters, 2007, 32(20): 2960-2962.doi:10.1364/OL.32.002960
    [21] RONTANI D, LOCQUET A, SCIAMANNA M,et al. Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view[J].IEEE Journal of Quantum Electronics, 2009, 45(7): 879-1891.doi:10.1109/JQE.2009.2013116
    [22] OHTSUBO J.Semiconductor Lasers:Stability,Instability and Chaos[M]. Heidelberg: Springer, 2013.
    [23] 韩韬, 刘香莲, 李璞, 等. 线宽增强因子对光反馈半导体 器混沌信号生成随机数性能的影响[J]. 物理学报,2017,66(12):124203.doi:10.7498/aps.66.124203

    HAN T, LIU X L, LI P,et al. Influence of the linewidth enhancement factor on the characteristics of the random number extracted from the optical feedback semiconductor laser[J].Acta Physica Sinica, 2017, 66(12): 124203. (in Chinese)doi:10.7498/aps.66.124203
    [24] 李增, 冯玉玲, 王晓茜, 等. 半导体 器输出混沌光的延时特性和带宽[J]. 物理学报,2018,67(14):140501.doi:10.7498/aps.67.20180035

    LI Z, FENG Y L, WANG X Q,et al. Time delay characteristics and bandwidth of chaotic laser from semiconductor laser[J].Acta Physica Sinica, 2018, 67(14): 140501. (in Chinese)doi:10.7498/aps.67.20180035
    [25] ZHAO A K, JIANG N, LIU SH Q,et al. Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback[J].Optics Express, 2019, 27(9): 12336-12348.doi:10.1364/OE.27.012336
    [26] LI S S, CHAN S C. Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback[J].IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 541-552.doi:10.1109/JSTQE.2015.2427521
    [27] XU Y P, ZHANG M J, ZHANG L,et al. Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced random distributed feedback[J].Optics Letters, 2017, 42(20): 4107-4110.doi:10.1364/OL.42.004107
    [28] HONG Y H, CHEN X F, SPENCER P S,et al. Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator[J].IEEE Journal of Quantum Electronics, 2015, 51(3): 1200106.
    [29] CHENG C H, CHEN Y CH, LIN F Y. Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning[J].Optics Express, 2015, 23(3): 2308-2319.doi:10.1364/OE.23.002308
    [30] JIANG N, WANG CH, XUE CH P,et al. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens[J].Optics Express, 2017, 25(13): 14359-14367.doi:10.1364/OE.25.014359
    [31] 孙巍阳, 张胜海, 吴天安, 等. 双光反馈双光注入混沌半导体 器延时特征峰抑制[J]. 与光电子学进展,2016,53(12):121406.

    SUN W Y, ZHANG SH H, WU T A,et al. Delay characteristic peak suppression of bioptical feedback bioptical injection chaotic semiconductor laser[J].Laser&Optoelectronics Progress, 2016, 53(12): 121406. (in Chinese)
    [32] QIAO L J, LV T SH, XU Y,et al. Generation of flat wideband chaos based on mutual injection of semiconductor lasers[J].Optics Letters, 2019, 44(22): 5394-5397.doi:10.1364/OL.44.005394
    [33] KANNO K, UCHIDA A, BUNSEN M. Complexity and bandwidth enhancement in unidirectionally coupled semiconductor lasers with time-delayed optical feedback[J].Physical Review E, 2016, 93(3): 032206.doi:10.1103/PhysRevE.93.032206
    [34] MU P H, HE P F, LIU Q L,et al. Numerical study of the time-delay signature in chaos optical injection system with phase-conjugate feedback[J].Optik, 2019, 179: 71-75.doi:10.1016/j.ijleo.2018.10.164
    [35] ZHANG J ZH, LI M W, WANG A B,et al. Time-delay-signature-suppressed broadband chaos generated by scattering feedback and optical injection[J].Applied Optics, 2018, 57(22): 6314-6317.doi:10.1364/AO.57.006314
    [36] XUE CH P, JIANG N, LV Y X,et al. Security-enhanced chaos communication with time-delay signature suppression and phase encryption[J].Optics Letters, 2016, 41(16): 3690-3693.doi:10.1364/OL.41.003690
    [37] 张依宁, 徐艾诗, 冯玉玲, 等. 光电反馈半导体 器输出光的混沌特性[J]. 光学学报,2020,40(12):1214001.doi:10.3788/AOS202040.1214001

    ZHANG Y N, XU A SH, FENG Y L,et al. Chaotic characteristics of output light by photoelectric feedback semiconductor laser[J].Acta Optica Sinica, 2020, 40(12): 1214001. (in Chinese)doi:10.3788/AOS202040.1214001
    [38] 张依宁, 冯玉玲, 王晓茜, 等. 半导体 器混沌输出的延时特征和带宽[J]. 物理学报,2020,69(9):090501.doi:10.7498/aps.69.20191881

    ZHANG Y N, FENG Y L, WANG X Q,et al. Time delay signature and bandwidth of chaotic laser output from semiconductor laser[J].Acta Physica Sinica, 2020, 69(9): 090501. (in Chinese)doi:10.7498/aps.69.20191881
    [39] PECORA L M, CARROLL T L. Driving systems with chaotic signals[J].Physical Review A, 1991, 44(4): 2374-2383.doi:10.1103/PhysRevA.44.2374
    [40] KANG Z X, SUN J, MA L,et al. Multimode synchronization of chaotic semiconductor ring laser and its potential in chaos communication[J].IEEE Journal of Quantum Electronics, 2014, 50(3): 148-157.doi:10.1109/JQE.2014.2299593
    [41] CAI X L, HO Y L D, MEZOSI G,et al. Frequency-domain model of longitudinal mode interaction in semiconductor ring lasers[J].IEEE Journal of Quantum Electronics, 2012, 48(3): 406-418.doi:10.1109/JQE.2012.2182759
    [42] JAYAPRASATH E, HOU Y SH, WU ZH M,et al. Anticipation in the polarization chaos synchronization of uni-directionally coupled vertical-cavity surface-emitting lasers with polarization-preserved optical injection[J].IEEE Access, 2018, 6: 58482-58490.doi:10.1109/ACCESS.2018.2874625
    [43] CHEN X F, HU H P. Chaos synchronisation of electro-optical chaotic systems with partially different parameters[J].IET Optoelectronics, 2016, 10(3): 89-93.doi:10.1049/iet-opt.2015.0039
    [44] AL BAYATI B M, AHMAD A K, AL NAIMEE K A M. Effect of control parameters on chaos synchronization by means of optical feedback[J].Optics Communications, 2020, 472: 126032.doi:10.1016/j.optcom.2020.126032
    [45] YANG L, PAN W, YAN L SH,et al. Mapping the dynamic complexity and synchronization in unidirectionally coupled external-cavity semiconductor lasers using permutation entropy[J].Journal of the Optical Society of America B, 2015, 32(7): 1463-1470.doi:10.1364/JOSAB.32.001463
    [46] SASAKI T, KAKESU I, MITSUI Y,et al. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution[J].Optics Express, 2017, 25(21): 26029-26044.
    [47] BÖHM F, SAHAKIAN S, DOOMS A,et al. Stable high-speed encryption key distribution via synchronization of chaotic optoelectronic oscillators[J].Physical Review Applied, 2020, 13: 064014.doi:10.1103/PhysRevApplied.13.064014
    [48] XIANG SH Y, HAN Y N, WANG H N,et al. Zero-lag chaos synchronization properties in a hierarchical tree-type network consisting of mutually coupled semiconductor lasers[J].Nonlinear Dynamics, 2020, 99(4): 2893-2906.doi:10.1007/s11071-020-05479-9
    [49] KANNO K, HIDA T, UCHIDA A,et al. Spontaneous exchange of leader-laggard relationship in mutually coupled synchronized semiconductor lasers[J].Physical Review E, 2017, 95(5): 052212.doi:10.1103/PhysRevE.95.052212
    [50] 李娟, 冯勇, 杨旭强, 等. 三维可逆混沌映射图像加密及其优化算法[J]. 光学 精密工程,2008,16(9):1738-1745.

    LI J, FENG Y, YANG X Q,et al. Invertible chaotic 3D map based image encryption and its optimized algorithm[J].Optics and Precision Engineering, 2008, 16(9): 1738-1745. (in Chinese)
    [51] 刘群, 刘崇, 朱小磊, 等. 星载海洋 雷达最佳工作波长分析[J]. 中国光学,2020,13(1):148-155.doi:10.3788/co.20201301.0148

    LIU Q, LIU CH, ZHU X L,et al. Analysis of the optimal operating wavelength of spaceborne oceanic lidar[J].Chinese Optics, 2020, 13(1): 148-155. (in Chinese)doi:10.3788/co.20201301.0148
    [52] ZHONG D ZH, XU G L, LUO W,et al. Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response VCSELs[J].Optics Express, 2017, 25(18): 21684-21704.doi:10.1364/OE.25.021684
    [53] WANG B J, GUO ZH W, SHEN ZH M,et al. Underwater 3D imaging utilizing 520 nm chaotic lidar[J].Journal of Russian Laser Research, 2020, 41(4): 399-405.doi:10.1007/s10946-020-09892-8
    [54] 唐士文, ANNOVAZZI-LODI V, 王昭. 光学密码术最新进展[J]. 中国光学,2014,7(1):89-97.

    TANG SH W, ANNOVAZZI-LODI V, WANG ZH. Recent advances in optical cryptography[J].Chinese Optics, 2014, 7(1): 89-97. (in Chinese)
    [55] KE J X, YI L L, XIA G Q,et al. Chaotic optical communications over 100 km fiber transmission at 30 Gb/s bit rate[J].Optics Letters, 2018, 43(6): 1323-1326.doi:10.1364/OL.43.001323
    [56] LI Q L, LU SH SH, BAO Q,et al. Simultaneous trilateral communication based on three mutually coupled chaotic semiconductor lasers with optical feedback[J].Applied Optics, 2018, 57(2): 251-257.doi:10.1364/AO.57.000251
    [57] 郭帅, 苏杭, 黄星灿, 等. 光学无创血糖浓度检测方法的研究进展[J]. 中国光学,2019,12(6):1235-1248.doi:10.3788/co.20191206.1235

    GUO SH, SU H, HUANG X C,et al. Research progress in optical methods for noninvasive blood glucose detection[J].Chinese Optics, 2019, 12(6): 1235-1248. (in Chinese)doi:10.3788/co.20191206.1235
    [58] SHAHZADI R, ANWAR S M, QAMAR F,et al. Secure EEG signal transmission for remote health monitoring using optical chaos[J].IEEE Access, 2019, 7: 57769-57778.doi:10.1109/ACCESS.2019.2912548
  • 加载中
图(9)/ 表(2)
计量
  • 文章访问数:1339
  • HTML全文浏览量:534
  • PDF下载量:262
  • 被引次数:0
出版历程
  • 收稿日期:2020-12-28
  • 修回日期:2021-01-14
  • 网络出版日期:2021-05-14
  • 刊出日期:2021-09-18

目录

    /

      返回文章
      返回
        Baidu
        map