-
摘要: 本文采用反射式全息光栅作为外部反馈元件,设计了638 nm光栅外腔窄线宽 器。使用高分辨率的光谱分析仪检测了Littrow结构的外腔半导体 器的输出光谱,并进一步研究了该 器的阈值和波长调谐特性。实验采用了2400 l/mm和1800 l/mm两种刻线密度的反射式全息光栅进行研究,在120 mA的注入电流下,采用刻线密度为2400 l/mm的光栅外腔 器的输出功率是45.2 mW,将阈值电流由60 mA降至51 mA,下降幅度为11%;采用刻线密度为1800 l/mm的光栅外腔 器的输出功率是38.7 mW,将阈值电流由60 mA降至47 mA,下降幅度为24%,光谱线宽均压窄至3.5 pm,且分别了实现了9.4 nm和10.5 nm宽度的波长调谐。实验结果表明,采用反射式全息光栅的Littrow结构用于半导体 器,极大地改善了半导体 器的性能。Abstract: In this paper, a narrow linewidth laser with an external grating cavity of 638 nm is described, wherein a reflection holographic grating was used as its external feedback element. The spectrum of the diode lasers with the grating external cavity arranged in a Littrow configuration were measured using a high-resolution monochromator and the characteristics of the threshold and tuning properties were investigated. In the experiment, reflection holographic gratings with 2400 l/mm and 1800 l/mm groove density were studied. At 120 mA injection current, the output power of the external cavity laser was 45.2 mW when the groove density was 2400 l/mm, and the threshold current of the LD was reduced from 60 mA to 51 mA and the descent rate was 11%. When the groove density was 1800 l/mm, the output power was 38.7 mW, the threshold current of the LD was reduced from 60 mA to 47 mA, and the descent rate was 24%. Furthermore, the linewidths were suppressed to within 3.5 pm, and the tuning ranges were 9.4 nm and 10.5 nm in wavelength. The experimental results showed that the performance of semiconductor lasers was improved greatly using the Littrow configuration with a reflective holographic grating.
-
Key words:
- diode laser /
- holographic grating /
- littrow configuration /
- spectral linewidth
-
表 1 2400 l/mm 全息光栅外腔 器与638 nm半导体 器参数性能对比结果
Table 1. Performance comparison of 2400 l/mm holographic grating external cavity laser and 638 nm semiconductor laser
Thresholdcurrent/
mAOutput power/
mW(120mA injection current)Line
width/
nmWavelength tuning range/
nmDiode laser 60 50.6 1.8 3 Diode laser with grating external cavity 51 45.2 0.0035 10 -
[1] LI F Q, YABLON J, VELTEN A, et al. High-depth-resolution range imaging with multiple-wavelength superheterodyne interferometry using 1550-nm lasers[J]. Applied Optics, 2017, 56(31): H51-H56. doi: 10.1364/AO.56.000H51 [2] ELIA A, LUGARÀ P M, DI FRANCO C, et al. Photoacoustic techniques for trace gas sensing based on semiconductor laser sources[J]. Sensors, 2009, 9(12): 9616-9628. doi: 10.3390/s91209616 [3] LANG X K, JIA P, CHEN Y Y, et al. Advances in narrow linewidth diode lasers[J]. Science China Information Sciences, 2019, 62(6): 61401. doi: 10.1007/s11432-019-9870-0 [4] PABC EUF D, HASTIE J E. Tunable narrow linewidth AlGaInP semiconductor disk laser for Sr atom cooling applications[J]. Applied Optics, 2016, 55(19): 4980-4984. doi: 10.1364/AO.55.004980 [5] YANG X X, YIN Y N, LI X J, et al. External cavity diode laser as a stable-frequency light source for application in laser cooling of molecules[J]. Chinese Optics Letters, 2016, 14(7): 071403. doi: 10.3788/COL201614.071403 [6] 高颖, 戴连奎, 朱华东, 等. 基于拉曼光谱的天然气主要组分定量分析[J]. 分析化学,2019,47(1):67-76.GAO Y, DAI L K, ZHU H D, et al. Quantitative analysis of main components of natural gas based on Raman spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 67-76. (in Chinese) [7] 刘洋, 张天舒, 赵雪松, 等. 高精度测温拉曼 雷达光谱仪的光学设计[J]. 光学 精密工程,2018,26(8):1904-1909. doi: 10.3788/OPE.20182608.1904LIU Y, ZHANG T SH, ZHAO X S, et al. Optical design and analysis of laser radar spectrometer with high accuracy[J]. Optics and Precision Engineering, 2018, 26(8): 1904-1909. (in Chinese) doi: 10.3788/OPE.20182608.1904 [8] 刘庆省, 郭金家, 杨德旺, 等. 小型高灵敏度水下拉曼光谱系统[J]. 光学 精密工程,2018,26(1):8-13. doi: 10.3788/OPE.20182601.0008LIU Q X, GUO J J, YANG D W, et al. A compact underwater Raman spectroscopy system with high sensitivity[J]. Optics and Precision Engineering, 2018, 26(1): 8-13. (in Chinese) doi: 10.3788/OPE.20182601.0008 [9] WANG W B, MAJOR A, PALIWAL J. Grating-stabilized external cavity diode lasers for Raman spectroscopy—a review[J]. Applied Spectroscopy Reviews, 2012, 47(2): 116-143. doi: 10.1080/05704928.2011.631649 [10] 刘燕德, 靳昙昙, 王海阳. 基于拉曼光谱的三组分食用调和油快速定量检测[J]. 光学 精密工程,2015,23(9):2490-2496. doi: 10.3788/OPE.20152309.2490LIU Y D, JIN T T, WANG H Y. Rapid quantitative determination of components in ternary blended edible oil based on Raman spectroscopy[J]. Optics and Precision Engineering, 2015, 23(9): 2490-2496. (in Chinese) doi: 10.3788/OPE.20152309.2490 [11] ZRIMSEK A B, CHIANG N, MATTEI M, et al. Single-molecule chemistry with surface-and tip-enhanced Raman spectroscopy[J]. Chemical Reviews, 2017, 117(11): 7583-7613. doi: 10.1021/acs.chemrev.6b00552 [12] PITTS W M. Carbon monoxide concentration measurements in fuel cell environments using Tunable Diode Laser Absorption Spectroscopy (TDLAS): an assessment[R]. 2017. [13] CHOI D W, JEON M G, CHO G R, et al. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)[J]. Journal of Thermal Science, 2016, 25(1): 84-89. doi: 10.1007/s11630-016-0837-z [14] 贾良权, 祁亨年, 胡文军, 等. 种子呼吸CO2浓度检测系统[J]. 光学 精密工程,2019,27(6):1397-1404. doi: 10.3788/OPE.20192706.1397JIA L Q, QI H N, HU W J, et al. CO2 concentration detection system for seed respiration[J]. Optics and Precision Engineering, 2019, 27(6): 1397-1404. (in Chinese) doi: 10.3788/OPE.20192706.1397 [15] 李春光, 董磊, 王一丁, 等. 基于TDLAS和ICL的紧凑中红外痕量气体探测系统[J]. 光学 精密工程,2018,26(8):1855-1861. doi: 10.3788/OPE.20182608.1855LI CH G, DONG L, WANG Y D, et al. Compact mid-infrared trace gas detection system based on TDLAS and ICL[J]. Optics and Precision Engineering, 2018, 26(8): 1855-1861. (in Chinese) doi: 10.3788/OPE.20182608.1855 [16] 龙睿, 王海龙, 成若海, 等. 外腔反馈对量子点 器输出特性的影响[J]. 发光学报,2013,34(4):474-479. doi: 10.3788/fgxb20133404.0474LONG R, WANG H L, CHENG R H, et al. Influence of external cavity feedback on the output characteristics of quantum-dot lasers[J]. Chinese Journal of Luminescence, 2013, 34(4): 474-479. (in Chinese) doi: 10.3788/fgxb20133404.0474 [17] 刘荣战, 薄报学, 么娜, 等. 体布拉格光栅外腔红光半导体 器实验研究[J]. 发光学报,2019,40(11):1401-1408. doi: 10.3788/fgxb20194011.1401LIU R ZH, BO B X, YAO N, et al. Experimental research on volume-Bragg-grating external cavity red-light semiconductor lasers[J]. Chinese Journal of Luminescence, 2019, 40(11): 1401-1408. (in Chinese) doi: 10.3788/fgxb20194011.1401 [18] GUO H P, OLAMAX G T. Analysis of no mode-hop tuning of mirror-grating external-cavity diode laser[J]. Optics Communications, 2018, 421: 90-93. doi: 10.1016/j.optcom.2018.03.074 [19] 田景玉, 张俊, 彭航宇, 等. 用于碱金属蒸汽 器泵浦的窄线宽780 nm半导体 源[J]. 发光学报,2019,40(9):1123-1129. doi: 10.3788/fgxb20194009.1123TIAN J Y, ZHANG J, PENG H Y, et al. 780 nm diode laser source with narrow linewidth for alkali metal vapor laser pumping[J]. Chinese Journal of Luminescence, 2019, 40(9): 1123-1129. (in Chinese) doi: 10.3788/fgxb20194009.1123 [20] DING D, LV W L, LV X Q, et al. Influence of grating parameters on the performance of a high-power blue external-cavity semiconductor laser[J]. Applied Optics, 2018, 57(7): 1589-1593. doi: 10.1364/AO.57.001589 [21] 郭海平, 万辰皓, 许成文, 等. 外腔半导体 器动态模稳定性的研究[J]. 技术,2016,40(5):706-710. doi: 10.7510/jgjs.issn.1001-3806.2016.05.018GUO H P, WAN CH H, XU CH W, et al. Study on dynamic mode stability of external cavity diode lasers[J]. Laser Technology, 2016, 40(5): 706-710. (in Chinese) doi: 10.7510/jgjs.issn.1001-3806.2016.05.018 [22] HONG W X. Design and characterization of a littrow configuration external cavity diode laser[EB/OL]. http://web.mit.edu/RSI/compendium/edit2004/Final/hong-wenxian-caltech-both.pdf. [23] 金杰, 郭曙光, 吕福云, 等. 外腔半导体 器的实验研究[J]. 南开大学学报(自然科学),2002,35(4):56-59.JIN J, GUO SH G, LU F Y, et al. Study of external cavity semiconductor laser[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2002, 35(4): 56-59. (in Chinese) [24] 李斌, 涂嫔, 徐勇跃, 等. 405nm波段光栅外腔窄线宽蓝紫光半导体 器[J]. 与光电子学进展,2015,52(3):031404.LI B, TU P, XU Y Y, et al. Narrow linewidth diode laser with grating external cavity in 405 nm band[J]. Laser &Optoelectronics Progress, 2015, 52(3): 031404. (in Chinese) [25] 陈少伟, 吕雪芹, 张江勇, 等. 蓝紫光宽带可调谐光栅外腔半导体 器[J]. 与光电子学进展,2013,50(11):111405.CHEN SH W, LÜ X Q, ZHANG J Y, et al. Blue-violet broadly tunable grating-coupled external cavity semiconductor laser[J]. Laser &Optoelectronics Progress, 2013, 50(11): 111405. (in Chinese) [26] 荣春朝, 严进一, 龚谦. Littman结构的平移透镜外腔半导体 器[J]. 杂志,2017,38(6):1-3.RONG CH CH, YAN J Y, GONG Q. Shift lens external cavity semiconductor lasers of Littman configuration[J]. Laser Journal, 2017, 38(6): 1-3. (in Chinese) [27] 周长帅, 王海龙, 龚谦, 等. 基于光栅相移效应的Littrow 器的无跳模调谐[J]. 通信技术,2018,51(5):1045-1049. doi: 10.3969/j.issn.1002-0802.2018.05.010ZHOU CH SH, WANG H L, GONG Q, et al. Mode-hop-free tuning of Littrow lasers based on grating phase-shift effect[J]. Communications Technology, 2018, 51(5): 1045-1049. (in Chinese) doi: 10.3969/j.issn.1002-0802.2018.05.010