-
摘要:为了获得基于孤子自频移效应的1.6 μm波段锁模脉冲,设计了一种非线性偏振旋转的掺铒光纤 器,并利用双输出结构检测脉冲。在泵浦功率为350 mW时,通过适当调节偏振控制器,同时在两个输出端观察到中心波长为1560 nm的类噪声脉冲,3 dB带宽为17.5 nm,脉冲持续时间为968 fs。进一步将泵浦功率增加至550 mW,输出端1的类噪声脉冲保持不变,输出端2的类噪声脉冲的中心波长红移至1614 nm,3 dB带宽增加至64.4 nm,脉冲持续时间减小至302 fs。谐振腔的最大输出功率为11.4 mW。同时,实验分析了色散位移光纤的长度对孤子自频移的影响,结果表明,在一定范围内,色散位移光纤的长度越长,孤子自频移的频移间距越小。实验研究的1.6 μm波段光纤 器在光学通信领域具有潜在的应用价值。Abstract:In order to obtain the 1.6 μm-band mode-locked pulse based on the soliton self-frequency shift effect, an erbium-doped fiber laser with nonlinear polarization rotation is designed, whose pulse is detected by a dual-output structure. At a pump power of 350 mW, the noise-like pulses with the central wavelength of 1560 nm are detected at the two outputs at the same time by properly adjusting the polarization controller. The 3 dB bandwidth is 17.5 nm, and the pulse duration is 968 fs. When the pump power is further increased to 550 mW, and the 1-port noise-like pulse remains fixed, the central wavelength of the 2-port noise-like pulse redshifts to 1614 nm, the 3 dB bandwidth increases to 64.4 nm, and the pulse duration decreases to 302 fs. The maximum output power of the resonant cavity is 11.4 mW. The experiment also analyzes the influence of the length of dispersion shifted fiber on soliton self-frequency shift. The results show that within a certain range, as the length of the dispersion shifted fiber increases, the frequency shift distance of the soliton self-frequency shift decreases. This 1.6-μm band fiber laser has potential applications in the field of optical communications.
-
表 1不同DSF长度对应的频移间距
Table 1.Frequency shift spacing corresponding to different DSF lengths
DSF长度/m 6 18 30 42 54 66 72 频移间距/nm 56.7 49.4 47.9 50.2 46.5 45.9 41.7 表 2两种状态下类噪声脉冲性能的对比
Table 2.Comparison of output pulse performance in two states
中心波长/nm 3 dB带宽/nm 尖峰宽度/fs 峰值功率/kW 加入DCF 1614 62.47 302 3.7 未加入DCF 1559.8 12.61 675 1.5 -
[1] FERMANN M E, HARTL I. Ultrafast fibre lasers[J].Nature Photonics, 2013, 7(11): 868-874.doi:10.1038/nphoton.2013.280 [2] 贾浩天, 王军利, 滕浩, 等. 亚皮秒L波段掺铒全光纤锁模 器[J]. 中国 ,2016,43(11):1101008.doi:10.3788/CJL201643.1101008JIA H T, WANG J L, TENG H,et al. Sub-picosecond L-band erbium-doped all fiber mode-locked laser[J].Chinese Journal of Lasers, 2016, 43(11): 1101008. (in Chinese)doi:10.3788/CJL201643.1101008 [3] ANURUPA, KAUR S, MALHOTRA Y. Performance evaluation and comparative study of novel high and flat gain C + L band Raman + EYDFA co-doped fibre hybrid optical amplifier with EYDFA only amplifier for 100 channels SD-WDM systems[J].Optical Fiber Technology, 2019, 53: 102016.doi:10.1016/j.yofte.2019.102016 [4] 贾振安, 李丽, 乔学光, 等. 高平坦度的三级双泵浦结构C+L波段超荧光光源[J]. 光学 精密工程,2010,18(3):558-562.JIA ZH A, LI L, QIAO X G,et al. High flattening C+L-band erbium-doped superfluorescent light source with three-stage two-pumping structure[J].Optics and Precision Engineering, 2010, 18(3): 558-562. (in Chinese) [5] 杨扬, 乔学光, 刘颖刚, 等. 基于过耦合器的L波段可变波长掺铒光纤 器[J]. 光学学报,2011,31(2):0214003.doi:10.3788/AOS201131.0214003YANG Y, QIAO X G, LIU Y G,et al. L-band variable wavelength erbium-doped fiber laser based on over-coupler[J].Acta Optica Sinica, 2011, 31(2): 0214003. (in Chinese)doi:10.3788/AOS201131.0214003 [6] 王蓟, 赵崇光, 刘洋, 等. L波段高掺铒光纤超荧光光源[J]. 发光学报,2006,27(6):1011-1014.doi:10.3321/j.issn:1000-7032.2006.06.034WANG J, ZHAO CH G, LIU Y,et al. L-band high erbium-doped fiber superfluorescent source[J].Chinese Journal of Luminescence, 2006, 27(6): 1011-1014. (in Chinese)doi:10.3321/j.issn:1000-7032.2006.06.034 [7] XU ZH, JIA D F, WANG ZH Y,et al. Observation of square- and h-shaped pulse from a mode-locked erbium-doped fiber laser[J].Applied Optics, 2021, 60(13): 3591-3595.doi:10.1364/AO.423380 [8] YU W L, XIAO Q R, WANG L L,et al. 219.6 W large-mode-area Er: Yb codoped fiber amplifier operating at 1600 nm pumped by 1018 nm fiber lasers[J].Optics Letters, 2021, 46(9): 2192-2195.doi:10.1364/OL.424368 [9] ISMAIL A, AL-MANSOORI M H, ABDULLAH F,et al. Tunable C + L bands triple frequency spacing multi-wavelength Brillouin-erbium fiber laser[J].Optical Fiber Technology, 2021, 64: 102535.doi:10.1016/j.yofte.2021.102535 [10] ZHU T Y, WANG ZH K, WANG D N,et al. Generation of wavelength-tunable and coherent dual-wavelength solitons in the C + L band by controlling the intracavity loss[J].Photonics Research, 2019, 7(8): 853-861.doi:10.1364/PRJ.7.000853 [11] 徐永钊, 刘敏霞, 张耿, 等. 色散平坦渐减光纤中非线性啁啾脉冲的传输及超连续谱的产生[J]. 发光学报,2016,37(4):439-445.doi:10.3788/fgxb20163704.0439XU Y ZH, LIU M X, ZHANG G,et al. Nonlinear chirped-pulse propagation and supercontinuum generation in dispersion-flattened dispersion-decreasing fibers[J].Chinese Journal of Luminescence, 2016, 37(4): 439-445. (in Chinese)doi:10.3788/fgxb20163704.0439 [12] 周华, 姚传飞, 贾志旭, 等. 中红外可调谐大能量飞秒脉冲 产生[J]. 发光学报,2020,41(4):435-441.doi:10.3788/fgxb20204104.0435ZHOU H, YAO CH F, JIA ZH X,et al. Mid-infrared tunable high pulse energy femtosecond pulse laser generation[J].Chinese Journal of Luminescence, 2020, 41(4): 435-441. (in Chinese)doi:10.3788/fgxb20204104.0435 [13] NAMIKI S, EMORI Y. Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes[J].IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(1): 3-16.doi:10.1109/2944.924003 [14] PENG J S, LUO H, ZHAN L. In-cavity soliton self-frequency shift ultrafast fiber lasers[J].Optics Letters, 2018, 43(24): 5913-5916.doi:10.1364/OL.43.005913 [15] LING Y, HUANG Q, SONG Q,et al. Intracavity birefringence-controlled GHz-tuning range passively harmonic mode-locked fiber laser based on NPR[J].Applied Optics, 2020, 59(22): 6724-6728.doi:10.1364/AO.398960 [16] GAO G G, ZHAO ZH G, CONG ZH H,et al. Widely wavelength-tunable mode locked Er-doped fiber oscillator from 1532 nm to 1594 nm with high signal-to-noise ratio[J].Optics&Laser Technology, 2021, 135: 106688. [17] 易波, 贾文, 徐军, 等. 非线性偏振旋转被动锁模光纤 器自动锁模电路[J]. 光学 精密工程,2013,21(12):2994-3000.doi:10.3788/OPE.20132112.2994YI B, JIA W, XU J,et al. Automatic mode-lock circuit used in NPR passive mode-locked fiber laser[J].Optics and Precision Engineering, 2013, 21(12): 2994-3000. (in Chinese)doi:10.3788/OPE.20132112.2994 [18] LEE J H, VAN HOWE J, XU C,et al. Soliton self-frequency shift: experimental demonstrations and applications[J].IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 713-723.doi:10.1109/JSTQE.2008.915526 [19] MITSCHKE F M, MOLLENAUER L F. Discovery of the soliton self-frequency shift[J].Optics Letters, 1986, 11(10): 659-661.doi:10.1364/OL.11.000659 [20] GORDON J P. Theory of the Soliton self-frequency shift[J].Optics Letters, 1986, 11(10): 662-664.doi:10.1364/OL.11.000662 [21] NISHIZAWA N, OKAMURA R, GOTO T. Analysis of widely wavelength tunable femtosecond soliton pulse generation using optical fibers[J].Japanese Journal of Applied Physics, 1999, 38(8R): 4768-4771. [22] 孔德飞, 贾东方, 冯德军, 等. 光纤中的孤子自频移效应[J]. 与光电子学进展,2018,55(10):101902.KONG D F, JIA D F, FENG D J,et al. Soliton self-frequency shift in optical fibers[J].Laser&Optoelectronics Progress, 2018, 55(10): 101902. (in Chinese) [23] LIU J, CHEN Y, TANG P H,et al. Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser[J].Optics Express, 2015, 23(5): 6418-6427.doi:10.1364/OE.23.006418 [24] PARK K D, MIN B, KIM P,et al. Dynamics of cascaded Brillouin–Rayleigh scattering in a distributed fiber Raman amplifier[J].Optics Letters, 2002, 27(3): 155-157.doi:10.1364/OL.27.000155 [25] ZAMZURI A K, ALI M I, AHMAD A,et al. Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity[J].Optics Letters, 2006, 31(7): 918-920.doi:10.1364/OL.31.000918