留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形大口径 光束质量评价光学系统设计

潘国涛,闫钰锋,于信,张雷,孙阔,白素平,孙宏申

downloadPDF
潘国涛, 闫钰锋, 于信, 张雷, 孙阔, 白素平, 孙宏申. 矩形大口径 光束质量评价光学系统设计[J]. , 2022, 15(2): 306-317. doi: 10.37188/CO.2021-0130
引用本文: 潘国涛, 闫钰锋, 于信, 张雷, 孙阔, 白素平, 孙宏申. 矩形大口径 光束质量评价光学系统设计[J]. , 2022, 15(2): 306-317.doi:10.37188/CO.2021-0130
PAN Guo-tao, YAN Yu-feng, YU Xin, ZHANG Lei, SUN Kuo, BAI Su-ping, SUN Hong-shen. Design of optical system for quality evaluation of a large rectangular aperture laser beam[J]. Chinese Optics, 2022, 15(2): 306-317. doi: 10.37188/CO.2021-0130
Citation: PAN Guo-tao, YAN Yu-feng, YU Xin, ZHANG Lei, SUN Kuo, BAI Su-ping, SUN Hong-shen. Design of optical system for quality evaluation of a large rectangular aperture laser beam[J].Chinese Optics, 2022, 15(2): 306-317.doi:10.37188/CO.2021-0130

矩形大口径 光束质量评价光学系统设计

doi:10.37188/CO.2021-0130
基金项目:吉林省科技发展计划项目(No. 20200401054GX);长春理工大学青年基金(No. XQNJJ-2019-01);吉林省教育厅“十三五”科学技术项目(No. JJKH20200756KJ);高等学校学科创新引智计划(No. D21009)
详细信息
    作者简介:

    潘国涛(1998—),男,天津人,硕士研究生,2020年于长春理工大学光电工程学院获得学士学位,研究方向包括光学设计,光机结构设计,误差分析,光电检测技术。E-mail:851993727@qq.com

    闫钰锋(1978—),男,吉林长春人,工学博士,教授,博士生导师,2010于长春理工大学测试计量技术与仪器专业获得博士学位,研究方向包括:光机结构设计,光电检测技术,仪器精度分析,光学测量,主要从事光电仪器设计、精密光电测量技术等。E-mail:yanyufeng@cust.edu.cn

  • 中图分类号:TG502.33;TH74

Design of optical system for quality evaluation of a large rectangular aperture laser beam

Funds:Supported by Science and Technology Development Project of Jilin Province (No. 20200401054GX); Youth Fund of Changchun University of Science and Technology (No. XQNJJ-2019-01); “The Thirteenth Five-Year Plan” Science and Technology Project of the Education Department of Jilin Province (No. JJKH20200756KJ); The 111 Project of China (No. D21009)
More Information
  • 摘要:自适应光学校正技术可有效提升固体板条 器的光束质量,但随着 器输出功率的提升,输出光束口径逐渐增加,系统体积逐渐增大,自适应光学校正系统的设计难度也增加了。因此,在满足自适应光学校正系统中共轭探测等需求的前提下,统筹优化系统的尺寸参数,同时实现波前相位、光束质量评估等多参数的检测具有一定的研究意义。本文在系统整体尺寸为350 mm×180 mm×220 mm(长×宽×高)的条件下,研究实现了板条 器输出160 mm×120 mm矩形光束多参数的检测。针对探测口径大、筒长限制、长出瞳距等技术要求,首先,利用双高斯初始结构的消像差特点,结合非球面技术,采用大倍率光束压缩后分光探测的设计方案,实现多参数的同时探测。其次,基于摄远成像和共轭成像等原理,确定系统初始参数。接着,建立仿真模型分析系统的成像质量和公差,为实验的搭建提供依据。最后,搭建实验平台验证设计结果。结果表明:所设计系统可在满足物像共轭、尺寸约束等条件下,实现对大口径矩形光束的共轭波前探测、光强均匀度检测和光束质量评估。实验测得被测光束 β因子为1.24倍衍射极限,均匀度为73.8%,满足技术指标要求。

  • 图 1矩形大口径 光束质量评价系统示意图

    Figure 1.Schematic diagram of evaluation system of the large rectangular aperture laser beam quality

    图 2系统2D结构图

    Figure 2.Schematic diagram of system (2D structure)

    图 3主缩束系统的光学结构示意图

    Figure 3.Schematic diagram of optical structure of main beam compression system

    图 4非球面子午曲率和弧矢曲率曲线图

    Figure 4.Curves of tangential and sagittal curvature of aspheric surfaces

    图 5主缩束系统像质评价

    Figure 5.Image quality evaluation results of the main beam compression system

    图 6光束质量探测子系统波像差

    Figure 6.Wavefront aberration of the beam quality detection subsystem

    图 7光束质量探测子系统2D图

    Figure 7.2D diagram of the beam quality detection subsystem

    图 8光束质量探测系统2D图

    Figure 8.2D diagram of the beam quality detection system

    图 9光束质量探测系统像质评价

    Figure 9.Evaluation results of the image quality of the beam quality detection system

    图 10光束均匀性探测子系统波像差

    Figure 10.Wavefront aberration of the beam uniformity detection subsystem

    图 11光束均匀性探测子系统2D图

    Figure 11.2D diagram of beam uniformity detection subsystem

    图 12光束均匀性探测系统加入理想透镜2D图

    Figure 12.2D diagram of the beam uniformity detection system with an ideal lens

    图 13光束均匀性探测系统像质分析

    Figure 13.Evaluation of the image quality of the beam uniformity detection system

    图 14矩形大口径近红外 光束质量评价系统

    Figure 14.Beam quality evaluation system of the large rectangular aperture near-infrared laser

    图 15哈特曼传感器光斑阵列图像

    Figure 15.Spot array image of Hartmann sensor

    图 16光束质量的探测图像

    Figure 16.Detection image of the beam quality

    图 17光束均匀性的探测图像

    Figure 17.Detection image of the beam uniformity

    表 1 光束质量评价系统的技术指标

    Table 1.The technical specifications of the laser beam quality evaluation system

    参数 数值
    主缩束装置倍率 11×
    主缩束系统通光口径 160 mm×120 mm
    视场 ±3′
    波长 (1064±0.3) nm
    主缩束入瞳位置 500 mm
    主缩束出瞳位置 ≥40 mm
    主缩束系统筒长 ≤320 mm
    主缩束系统配合光束质量
    探测光学系统EFFL
    5500 mm
    光束均匀性探测光学系统
    缩束倍率
    4.5×
    光束质量β因子 ≤1.3×DL
    系统整体尺寸 350 mm×180 mm×220 mm
    (长×宽×高)
    下载: 导出CSV

    表 2主缩束系统透镜数据

    Table 2.Lens data of the main beam compression system

    Type Radius Thickness Glass
    Even Asphere 440.000 22.893 H-ZLAF52A
    Standard −2924.268 1.000
    Standard 231.431 28.018 H-ZLAF55D
    Standard 925.079 56.403
    Standard 394.602 10.800 H-ZF73
    Standard 64.282 30.000 H-ZLAF68C
    Standard 191.455 154.885
    Standard −13.435 2.009 H-ZLAF55D
    Standard −1053.154 4.077
    Standard −20.488 4.037 H-ZLAF53B
    Standard −13.485 0.811
    Standard 311.182 4.496 H-ZLAF53B
    Standard −25.212 41.405
    下载: 导出CSV

    表 3光束质量探测子系统透镜数据

    Table 3.Lens data of beam quality detection subsystem

    Radius Thickness Glass
    36.523 7.047 H-ZLA
    415.691 20.267
    −38.384 8.628 H-ZF88
    155.064 38.737
    −124.904 5.558 H-ZLA
    12.285 45.272
    下载: 导出CSV

    表 4光束质量探测系统的公差数据

    Table 4.Tolerance data of beam quality detection system

    No. Radius Thickness/mm Decenter
    (X/Y)/mm
    Tilt
    (X/Y)/(′)
    Index Abbe.
    Len1 ±0.02 ±0.025 ±0.01 ±0.7 ±0.0005 ±0.08%
    Len2 ±0.02 ±0.025 ±0.01 ±0.6 ±0.0005 ±0.08%
    Len3 ±0.02 ±0.025 ±0.01 ±0.7 ±0.0005 ±0.08%
    Len4 ±0.03 ±0.025 ±0.03 ±0.1 ±0.002 ±0.2%
    Len5 ±0.03 ±0.0375 ±0.01 ±1.5 ±0.002 ±0.2%
    Len6 ±0.03 ±0.0375 ±0.02 ±1.5 ±0.002 ±0.2%
    Len7 ±0.03 ±0.0375 ±0.02 ±2 ±0.002 ±0.3%
    Len8 ±0.03 ±0.0375 ±0.02 ±2 ±0.002 ±0.3%
    Len9 ±0.03 ±0.0375 ±0.02 ±2 ±0.002 ±0.3%
    下载: 导出CSV

    表 5光束质量探测系统的1000次蒙特卡罗分析结果

    Table 5.1000 Monte Carlo statistical analysis results of the beam quality detection system

    Percentage of Monte Carlo/% RMS Wavefront
    98 0.2715
    90 0.1871
    80 0.1586
    50 0.1109
    下载: 导出CSV

    表 6光束均匀性探测子系统透镜数据

    Table 6.Lens data of the beam uniformity detection subsystem

    Radius Thickness Glass
    66.752 3.964 H-ZF7LA
    Infinity 0.800
    −154.456 6.000 H-ZF7LAGT
    −340.621 117.358
    −5.693 3.326 H-K9L
    −7.277 1.000
    −23.127 3.893 H-ZLAF68N
    −10.385 3.000
    −6.247 3.950 H-K9L
    −6.247 26.932
    下载: 导出CSV

    表 7光束均匀性探测系统公差数据

    Table 7.Tolerance data of the beam uniformity detection system

    No. Radius Thickness Decenter (X/Y)/mm Tilt (X/Y)/(′) Index Abbe.
    Len1 ±0.02 ±0.025 mm ±0.01 ±0.8 ±0.0005 ±0.08%
    Len2 ±0.02 ±0.025 mm ±0.01 ±0.6 ±0.0005 ±0.08%
    Len3 ±0.02 ±0.025 mm ±0.01 ±0.8 ±0.0005 ±0.08%
    Len4 ±0.03 ±0.035 mm ±0.03 ±1.5 ±0.0005 ±0.2%
    Len5 ±0.03 ±0.035 mm ±0.01 ±1.5 ±0.003 ±0.2%
    Len6 ±0.03 ±0.035 mm ±0.03 ±1.5 ±0.003 ±0.2%
    Len7 ±0.03 ±0.035 mm ±0.03 ±3.0 ±0.001 ±0.2%
    Len8 ±0.03 ±0.035 mm ±0.03 ±3.0 ±0.003 ±0.2%
    Len9 ±0.03 ±0.035 mm ±0.03 ±3.0 ±0.003 ±0.2%
    Len10 ±0.03 ±0.035 mm ±0.03 ±3.0 ±0.003 ±0.2%
    Len11 ±0.03 ±0.035 mm ±0.03 ±3.0 ±0.003 ±0.2%
    下载: 导出CSV

    表 8光束均匀性探测系统1000次蒙特卡罗分析结果

    Table 8.1000 Monte Carlo statistical analysis results of the beam uniformity detection system

    Percentage of Monte Carlo RMS Wavefront
    98% 0.2403
    90% 0.1874
    80% 0.1625
    50% 0.1189
    下载: 导出CSV
  • [1] KOSSOWSKY R, JELINEK M, WALTER R F.High Power Lasers——Science and Engineering[M]. Dordrecht: Springer, 1996.
    [2] LIU B L, WANG ZH CH, YANG F,et al. High brightness 556 nm laser by frequency doubling of a 1112 nm Nd∶YAG laser[J].IEEE Photonics Technology Letters, 2014, 26(10): 969-972.doi:10.1109/LPT.2014.2309795
    [3] 唐睿, 高子叶, 吴正茂, 等. 基于SESAM被动调Q的 二极管泵浦Yb∶CaYAlO4脉冲 器[J]. 中国光学,2019,12(1):167-178.doi:10.3788/co.20191201.0167

    TANG R, GAO Z Y, WU ZH M,et al. Output characteristics of diode-pumped passivelyQ-switched Yb∶CaYAlO4pulsed laser based on a SESAM[J].Chinese Optics, 2019, 12(1): 167-178. (in Chinese)doi:10.3788/co.20191201.0167
    [4] 刘学胜, 董剑, 徐爱东, 等. 双程放大740 mJ TEC冷却LD泵浦Nd∶YAG 器[J]. 发光学报,2018,39(7):991-996.doi:10.3788/fgxb20183907.0991

    LIU X SH, DONG J, XU A D,et al. Two-pass amplifier 740 mJ diode-pumped Nd∶YAG laser with thermoelectric cooler[J].Chinese Journal of Luminescence, 2018, 39(7): 991-996. (in Chinese)doi:10.3788/fgxb20183907.0991
    [5] 岱钦, 张善春, 杨帆, 等. 高光束质量高斯非稳腔固体 器研究[J]. 中国光学,2019,12(3):559-566.doi:10.3788/co.20191203.0559

    DAI Q, ZHANG SH CH, YANG F,et al. Research on the high beam quality of Gaussian unstable resonators in solid state lasers[J].Chinese Optics, 2019, 12(3): 559-566. (in Chinese)doi:10.3788/co.20191203.0559
    [6] YU X, DONG L ZH, LAI B H,et al. Automatic low-order aberration correction based on geometrical optics for slab lasers[J].Applied Optics, 2017, 56(6): 1730-1739.doi:10.1364/AO.56.001730
    [7] FAN ZH W, QIU J S, KANG ZH J,et al. High beam quality 5 J, 200 Hz Nd: YAG laser system[J].Light:Science&Applications, 2017, 6(3): e17004.
    [8] 于信. 板条 低阶像差自动校正技术研究[D]. 成都: 电子科技大学, 2018: 1-14.

    YU X.Research on automatic low-order aberration correction of slab laser[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 1-14. (in Chinese)
    [9] 相里微. 大功率 波前测量系统设计[D]. 西安: 西安电子科技大学, 2012: 21-24.

    XIANG L W.Design of high-power laser wavefront measurement system[D]. Xi’an: Xidian University, 2012: 21-24. (in Chinese)
    [10] 张成栋. 光束质量诊断与测量研究[D]. 长沙: 国防科学技术大学, 2017: 30-38.

    ZHANG CH D.Diagnosis and measurement of laser beam quality[D]. Changsha: National University of Defense Technology, 2017: 30-38. (in Chinese)
    [11] 张禹, 杨忠明, 刘兆军, 等. 大口径多光谱通道波前测量系统设计[J]. 红外与 工程,2020,49(8):20190559.doi:10.3788/IRLA20190559

    ZHANG Y, YANG ZH M, LIU ZH J,et al. Design of large aperture multi-spectra channel wavefront measurement system[J].Infrared and Laser Engineering, 2020, 49(8): 20190559. (in Chinese)doi:10.3788/IRLA20190559
    [12] 张禹. 共轴式大口径多光谱通道波前测量系统的研究[D]. 济南: 山东大学, 2020: 10-21, 41-43.

    ZHANG Y.Research on coaxial large aperture multi-spectra channel wavefront measurement system[D]. Ji’nan: Shandong University, 2020: 10-21, 41-43. (in Chinese)
    [13] FOURMAUX S, PAYEUR S, ALEXANDROV A,et al. Laser beam wavefront correction for ultra high intensities with the 200 TW laser system at the advanced laser light source[J].Optics Express, 2008, 16(16): 11987-11994.doi:10.1364/OE.16.011987
    [14] LU H H, LIN CH Y, LU T C,et al. 150 m/280 Gbps WDM/SDM FSO link based on OEO-based BLS and afocal telescopes[J].Optics Letters, 2016, 41(12): 2835-2838.doi:10.1364/OL.41.002835
    [15] 郁道银, 谈恒英. 工程光学[M]. 3版. 北京: 机械工业出版社, 2011.

    YU D Y, TAN H Y.Engineering Optics[M]. 3rd ed. Beijing: China Machine Press, 2011. (in Chinese)
    [16] 傅瑞斯. 摄远物镜初步设计的一种方法[J]. 云光技术,2002,34(2):21-24.

    FU R S. A method for primary design of telephoto objective[J].Yunguang Technology, 2002, 34(2): 21-24. (in Chinese)
    [17] CHEN ZH ZH, XU Y T, GUO Y D,et al. 8.2 kW high beam quality quasi-continuous-wave face-pumped Nd: YAG slab amplifier[J].Applied Optics, 2015, 54(16): 5011-5015.doi:10.1364/AO.54.005011
    [18] REDMOND S, MCNAUGHT S, ZAMEL J,et al. . 15 kW near-diffraction-limited single-frequency Nd: YAG laser[C].2007 Conference on Lasers and Electro-Optics (CLEO),IEEE, 2005: 1-2.
    [19] 林星辰, 朱洪波, 王彪, 等. 均匀光强分布的5 kW半导体 硬化光源研制[J]. 光学 精密工程,2017,25(5):1178-1184.doi:10.3788/OPE.20172505.1178

    LIN X CH, ZHU H B, WANG B,et al. Development of 5 kW diode laser hardening source with homogenized intensity distribution[J].Optics and Precision Engineering, 2017, 25(5): 1178-1184. (in Chinese)doi:10.3788/OPE.20172505.1178
  • 加载中
图(18)/ 表(8)
计量
  • 文章访问数:823
  • HTML全文浏览量:424
  • PDF下载量:177
  • 被引次数:0
出版历程
  • 收稿日期:2021-06-26
  • 修回日期:2021-07-26
  • 网络出版日期:2021-10-22
  • 刊出日期:2022-03-21

目录

    /

      返回文章
      返回
        Baidu
        map