留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

532 nm皮秒脉冲 对单晶硅的损伤特性研究

王佳敏,季艳慧,梁志勇,陈飞,郑长彬

downloadPDF
王佳敏, 季艳慧, 梁志勇, 陈飞, 郑长彬. 532 nm皮秒脉冲 对单晶硅的损伤特性研究[J]. , 2022, 15(2): 242-250. doi: 10.37188/CO.2021-0160
引用本文: 王佳敏, 季艳慧, 梁志勇, 陈飞, 郑长彬. 532 nm皮秒脉冲 对单晶硅的损伤特性研究[J]. , 2022, 15(2): 242-250.doi:10.37188/CO.2021-0160
WANG Jia-min, JI Yan-hui, LIANG Zhi-yong, CHEN Fei, ZHENG Chang-bin. Damage characteristics of a 532 nm picosecond pulse laser on monocrystalline silicon[J]. Chinese Optics, 2022, 15(2): 242-250. doi: 10.37188/CO.2021-0160
Citation: WANG Jia-min, JI Yan-hui, LIANG Zhi-yong, CHEN Fei, ZHENG Chang-bin. Damage characteristics of a 532 nm picosecond pulse laser on monocrystalline silicon[J].Chinese Optics, 2022, 15(2): 242-250.doi:10.37188/CO.2021-0160

532 nm皮秒脉冲 对单晶硅的损伤特性研究

doi:10.37188/CO.2021-0160
基金项目:国家重点研发计划资助项目(No. 2018YFE0203203);中国科学院创新交叉团队(No. JCTD-2020-13);中科院长春光机所重大创新项目(No. E10302Y3M0)
详细信息
    作者简介:

    王佳敏(1995—),女,内蒙古呼和浩特人,博士研究生,2018年于内蒙古大学获得学士学位,主要从事 辐照效应方面的研究。E-mail:wangjiamin18@mails.ucas.ac.cn

    郑长彬(1981—),男,黑龙江富锦人,博士,副研究员,2005年于吉林大学获得硕士学位,2011年于哈尔滨工业大学获得博士学位,主要从事 辐照效应方面的研究。E-mail:zhengchangbin@ciomp.ac.cn

  • 中图分类号:TN249

Damage characteristics of a 532 nm picosecond pulse laser on monocrystalline silicon

Funds:Supported by National Key R&D Program Funded Project (No. 2018YFE0203203); Innovative Cross Team of the Chinese Academy of Sciences (No. JCTD-2020-13); Major Innovation Project of Changchun Institute of Optics and Mechanics, Chinese Academy of Sciences (No. E10302Y3M0)
More Information
  • 摘要:随着光电对抗和超短脉冲 技术的发展,研究超短脉冲 与单晶硅相互作用具有非常重要的理论和实际意义。为了进一步明确532 nm皮秒脉冲 对单晶硅的损伤机理,本文开展了532 nm皮秒脉冲 辐照单晶硅的损伤效应实验研究,测定了损伤阈值,明确了损伤机理,探讨了低通量下的脉冲累积效应。首先,利用波长为532 nm、脉冲宽度为30 ps的 器和金相显微镜,基于1-on-1的 损伤测试方法,测定了单晶硅的零损伤概率阈值为0.52 J/cm 2;其次,研究了皮秒 辐照单晶硅在不同 能量密度下的损伤形貌,发现532 nm皮秒脉冲 对单晶硅的损伤表现为热影响损伤和等离子体冲击损伤,随着 能量密度的增大,按主要的损伤机制可将损伤程度分为:热影响(0.52~3 J/cm 2)、热烧蚀(3~50 J/cm 2)和等离子烧蚀(>50 J/cm 2),且不同情况下,损伤面积随 能量密度分别对应不同的增长规律;最后,研究了低通量下多脉冲的累积效应,发现在0.52 J/cm 2的 能量密度下,连续辐照16个脉冲时表面形成热影响区,验证了多脉冲的累积效应可以降低单晶硅的 损伤阈值。

  • 图 1皮秒 诱导损伤实验装置图

    Figure 1.Schematic diagram of the picosecond laser induced damage experiment setup

    图 2损伤区域尺寸随 能量密度的变化规律

    Figure 2.The size of the damaged area changes with the laser’s energy density

    图 3不同能量密度下损伤形貌图

    Figure 3.Damage morphography at different energy densities

    图 4302 J/cm2能量密度的损伤形貌图

    Figure 4.Damage morphography at the energy density of 302 J/cm2

    图 5能量密度为21.9 J/cm2的损伤形貌图

    Figure 5.Damage morpography at the energy density of 21.9 J/cm2

    图 6能量密度为3.04 J/cm2的损伤形貌图

    Figure 6.Damage morphography at the energy density of 3.04 J/cm2

    图 7能量密度为0.52、1.07 J/cm2时脉冲累积效应的损伤形貌

    Figure 7.Damage morphography from the pulse accumulation effect at the energy densities of 0.52 J/cm2、1.07 J/cm2

    图 8烧蚀区域尺寸随脉冲数量的变化规律

    Figure 8.Variation of the ablation zone size with the number of pulses

    图 9脉冲累积效应的损伤形貌

    Figure 9.Damage morphology from the pulse accumulation effect

  • [1] XIE CH, MEYER R, FROEHLY L,et al. In-situ diagnostic of femtosecond laser probe pulses for high resolution ultrafast imaging[J].Light:Science&Applications, 2021, 10(1): 126.
    [2] JIANG L, WANG A D, LI B,et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J].Light:Science&Applications, 2018, 7(2): 17134.
    [3] MALINAUSKAS M, ŽUKAUSKAS A, HASEGAWA S,et al. Ultrafast laser processing of materials: from science to industry[J].Light:Science&Applications, 2016, 5(8): e16133.
    [4] LIU Y, LIU L SH, TANG W,et al. Experimental study on the damage of optical materials by out of band composite laser[J].Applied Sciences, 2020, 10(10): 3578.doi:10.3390/app10103578
    [5] FINGER J, BORNSCHLEGEL B, REININGHAUS M,et al. Heat input and accumulation for ultrashort pulse processing with high average power[J].Advanced Optical Technologies, 2018, 7(3): 145-155.doi:10.1515/aot-2018-0008
    [6] CHICHKOV B N, MOMMA C, NOLTE S,et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J].Applied Physics A, 1996, 63(2): 109-115.doi:10.1007/BF01567637
    [7] MERKLE L D, BASS M, SWIMM R T. Erratum: multiple pulse laser-induced bulk damage in crystalline and fused quartz at 1.064 and 0.532 õm[J].Optical Engineering, 1986, 25(1): 251196.doi:10.1117/12.7973801
    [8] MEYER J R, KRUER M R, BARTOLI F J. Optical heating in semiconductors: laser damage in Ge, Si, InSb, and GaAs[J].Journal of Applied Physics, 1980, 51(10): 5513-5522.doi:10.1063/1.327469
    [9] RUBLACK T, HARTNAUER S, MERGNER M,et al. Mechanism of selective removal of transparent layers on semiconductors using ultrashort laser pulses[J].Proceedings of SPIE, 2012, 8247: 82470Z.doi:10.1117/12.905741
    [10] SMIRNOV N A, KUDRYASHOV S I, RUDENKO A A,et al. Pulsewidth and ambient medium effects during ultrashort-pulse laser ablation of silicon in air and water[J].Applied Surface Science, 2021, 562: 150243.doi:10.1016/j.apsusc.2021.150243
    [11] 张明鑫, 李志明, 聂劲松, 等. 多脉冲飞秒 烧蚀硅的热累积效应[J]. 光电子技术,2018,38(4):224-230.

    ZHANG M X, LI ZH M, NIE J S,et al. Heat accumulation effect of multipulse femtosecond laser ablation of silicon[J].Optoelectronic Technology, 2018, 38(4): 224-230. (in Chinese)
    [12] WANG X, SHEN ZH H, LU J,et al. Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes[J].Journal of Applied Physics, 2010, 108(3): 033103.doi:10.1063/1.3466996
    [13] VAN WOERKOM T A, PERRAM G P, DOLASINSKI B D,et al. Picosecond laser ablation of metals and semiconductors with low-transverse order Gaussian beams[J].Optical Engineering, 2020, 60(3): 031002.
    [14] SHAHEEN M E, GAGNON J E, FRYER B J. Studies on laser ablation of silicon using near IR picosecond and deep UV nanosecond lasers[J].Optics and Lasers in Engineering, 2019, 119: 18-25.doi:10.1016/j.optlaseng.2019.02.003
    [15] THORSTENSEN J, FOSS S E. Investigation of depth of laser damage to silicon as function of wavelength and pulse duration[J].Energy Procedia, 2013, 38: 794-800.doi:10.1016/j.egypro.2013.07.348
    [16] 郑长彬, 邵俊峰, 李雪雷, 等. 飞秒脉冲 对硅基多层膜损伤特性[J]. 中国光学,2019,12(2):371-381.doi:10.3788/co.20191202.0371

    ZHENG CH B, SHAO J F, LI X L,et al. Femtosecond pulsed laser induced damage characteristics on Si-based multi-layer film[J].Chinese Optics, 2019, 12(2): 371-381. (in Chinese)doi:10.3788/co.20191202.0371
    [17] 邵俊峰, 郭劲, 王挺峰. 飞秒 与硅的相互作用过程理论研究[J]. 红外与 工程,2014,43(8):2419-2424.doi:10.3969/j.issn.1007-2276.2014.08.005

    SHAO J F, GUO J, WANG T F. Theoretical research on dynamics of femto-second laser ablation crystal silicon[J].Infrared and Laser Engineering, 2014, 43(8): 2419-2424. (in Chinese)doi:10.3969/j.issn.1007-2276.2014.08.005
    [18] MCDONALD J P, MISTRY V R, RAY K E,et al. Femtosecond pulsed laser direct write production of nano- and microfluidic channels[J].Applied Physics Letters, 2006, 88(18): 183113.doi:10.1063/1.2201620
    [19] BENOCCI R, BATANI D, ROMAN H E. Incubation models for under-threshold laser ablation with thermal dissipation[J].Applied Physics B, 2019, 125(2): 22.doi:10.1007/s00340-019-7132-0
    [20] KÜPER S, STUKE M. UV-excimer-laser ablation of polymethylmethacrylate at 248 nm: characterization of incubation sites with Fourier transform IR- and UV-spectroscopy[J].Applied Physics A, 1989, 49(2): 211-215.doi:10.1007/BF00616301
    [21] KÜPER S, STUKE M. Femtosecond UV excimer laser ablation[J].Applied Physics B, 1987, 44(4): 199-204.doi:10.1007/BF00692122
    [22] VAN DER LINDEN S, HAGMEIJER R, RÖMER G R B E. Picosecond pulsed underwater laser ablation of silicon and stainless steel: comparing crater analysis methods and analysing dependence of crater characteristics on water layer thickness[J].Applied Surface Science, 2021, 540: 148005.doi:10.1016/j.apsusc.2020.148005
  • 加载中
图(11)
计量
  • 文章访问数:873
  • HTML全文浏览量:453
  • PDF下载量:147
  • 被引次数:0
出版历程
  • 收稿日期:2021-08-16
  • 录用日期:2021-11-18
  • 修回日期:2021-09-24
  • 网络出版日期:2021-11-18
  • 刊出日期:2022-03-21

目录

    /

      返回文章
      返回
        Baidu
        map