留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离轴三反望远镜轴向与横向失调量像差耦合特性

白晓泉,郭良,马宏财,许博谦,鞠国浩,徐抒岩

downloadPDF
白晓泉, 郭良, 马宏财, 许博谦, 鞠国浩, 徐抒岩. 离轴三反望远镜轴向与横向失调量像差耦合特性[J]. , 2022, 15(4): 747-760. doi: 10.37188/CO.2021-0164
引用本文: 白晓泉, 郭良, 马宏财, 许博谦, 鞠国浩, 徐抒岩. 离轴三反望远镜轴向与横向失调量像差耦合特性[J]. , 2022, 15(4): 747-760.doi:10.37188/CO.2021-0164
BAI Xiao-quan, GUO Liang, MA Hong-cai, XU Bo-qian, JU Guo-hao, XU Shu-yan. Aberration coupling characteristics of axial and lateral misalignments of off-axis three-mirror telescopes[J]. Chinese Optics, 2022, 15(4): 747-760. doi: 10.37188/CO.2021-0164
Citation: BAI Xiao-quan, GUO Liang, MA Hong-cai, XU Bo-qian, JU Guo-hao, XU Shu-yan. Aberration coupling characteristics of axial and lateral misalignments of off-axis three-mirror telescopes[J].Chinese Optics, 2022, 15(4): 747-760.doi:10.37188/CO.2021-0164

离轴三反望远镜轴向与横向失调量像差耦合特性

doi:10.37188/CO.2021-0164
基金项目:自然科学基金资助项目(No. 61905241)
详细信息
    作者简介:

    白晓泉(1993—),男,吉林长春人,博士研究生,2017年于长春理工大学获得学士学位,主要从事空间望远镜像差场特性及在轨调整策略方面的研究。E-mail:XiaoquanBai93@163.com.cn

    郭 良(1994-),男,山东济南人,博士研究生,2017年于山东理工大学获得学士学位,主要从事空间大口径望远镜主动光学波前检测方面的研究。E-mail: 1252591259@qq.com.cn

    马宏财(1985—),男,黑龙江佳木斯人,博士,副研究员,硕士生导师,主要从事空间大口径光学系统设计理论和方法研究。E-mail:mahc@ciomp.ac.cn

    许博谦(1985—),男,黑龙江大庆人,博士,副研究员,主要从事超大口径在轨组装式望远镜技术设计方面的研究。E-mail:ciomp_xubq@126.com

    鞠国浩(1988—),男,山东潍坊人,博士,副研究员,主要从事空间望远镜主动光学技术研究。E-mail:juguohao@ciomp.ac.cn

    徐抒岩 (1963—),男,吉林长春人,工学硕士,研究员,博士生导师,荣获中国载人航天工程突出贡献者奖章,曾宪梓载人航天基金突出贡献奖。主要从事空间大口径望远镜总体方面研究。E-mail:xusy@ciomp.ac.cn

  • 中图分类号:TH743;TH703

Aberration coupling characteristics of axial and lateral misalignments of off-axis three-mirror telescopes

Funds:Supported by National Natural Science Foundation of China (NSFC)(No. 61905241)
  • 摘要:

    为了保证离轴三反空间望远镜地面装调阶段及在轨调整阶段的成像质量,本文基于矢量像差理论从内在机理层面揭示了轴向失调与横向失调对像差影响的耦合特性,重点分析了两类失调耦合特性产生的补偿关系:(1)针对轴向失调补偿横向失调,揭示了装调过程中系统像质可能处于局部极值的一类工况;(2)针对横向失调补偿轴向失调,提出利用在轨横向失调引入的像散、彗差补偿轴向失调引入的像散、彗差的补偿策略(离焦不能补偿)。本文以实验室现有的一套离轴三反系统为例,充分验证了解析关系的准确性。仿真和实验证明:当系统同时存在轴向失调和横向失调时,系统成像质量也可能达到衍射极限(1/14λ),但系统像质处于局部极小值;望远镜在轨处于失调状态且离焦较小时,可以优先通过校正横向失调以完成系统像质校正,RMS波前误差改变量小于0.02λ。

  • 图 1500 mm离轴三反光路图。(a)示意图及(b)实验图

    Figure 1.(a) Schematic diagram and (b) experiment device of the 500 mm off-axis three-mirror system

    图 2不同状态下的像散场

    Figure 2.FFDs (full field displays) for astigmatism in different states

    图 3不同状态下的彗差场

    Figure 3.FFDs for the coma in different states

    图 5以彗差场改变量最小为目标进行补偿时像差场分布

    Figure 5.Aberration field distribution when the minimized coma field change is set as the goal for compensation

    图 4以像散场改变量最小为目标进行补偿时像差场分布

    Figure 4.Aberration field distribution when the minimized astigmatism field change is set as the goal for compensation

    图 6利用轴向自由度补偿横向失调过程中不同状态全视场波前误差RMS分布

    Figure 6.Full-field distributions of RMS wavefront error for different states in the process of compensating the aberrations induced by lateral misalignments using axial mialignments

    图 7横向失调补偿轴向失调时不同阶段像差场分布

    Figure 7.Aberration field distribution in different states when the lateral misalignment compensates for the axial misalignment

    图 8利用横向位姿自由度补偿轴向失调(ZDE_SM=1mm)前后全视场RMS分布

    Figure 8.Full-field distributions of RMS wavefront error before and after compensating the aberrations induced by axial misalignments (ZDE_SM=1mm) using lateral mialignments

    图 9用横向位姿自由度补偿轴向失调(ZDE_SM=−1mm)前后全视场RMS分布

    Figure 9.Full-field distributions of RMS wavefront error before and after compensating the aberrations induced by axial misalignments (ZDE_SM=−1mm) using lateral misalignments

    图 10不同状态下干涉仪测量结果(去除部分高频量)

    Figure 10.Measurement results with interferometer under different conditions (remove some high frequency)

    表 1波像差系数对主次镜间距的敏感度

    Table 1.Sensitivity of the wavefront aberration coefficient to the distance between primary and secondary mirrors (632.8 nm/mm)

    像差系数 像差系数对主次镜间距的敏感度
    $ {K_{040{d_1}}} $ 0.080
    $ {K_{222{d_1}}} $ 0.239
    $ {K_{131{d_1}}} $ −0.119
    下载: 导出CSV

    表 2波像差系数对次三镜间距的敏感度

    Table 2.Sensitivity of the wavefront aberration coefficient to the distance between the secondary and tertiary mirrors (632.8 nm/mm)

    像差系数 像差系数对次三镜间距的敏感度
    $ {K_{040{d_2}}} $ −0.006
    $ {K_{222{d_2}}} $ −0.016
    $ {K_{131{d_2}}} $ 0.028
    下载: 导出CSV

    表 3不同方法获得的像散系数差值

    Table 3.The difference in the astigmatism coefficient obtained by different methods (λ=632.8 nm)

    视场 Zernike 像差系数 仿真软
    件获取值
    公式
    计算值
    (0.3°,−0.8°) $ \Delta {C_5} $ −0.0038 −0.0026
    $ \Delta {C_6} $ −0.0495 −0.0388
    (−0.3°,−0.8°) $ \Delta {C_5} $ 0.0109 0.0118
    $ \Delta {C_6} $ −0.0659 −0.0618
    下载: 导出CSV

    表 4不同方法获得的彗差系数差值

    Table 4.The difference in the coma coefficient obtained by different methods (λ=632.8 nm)

    视场 Zernike 像差系数 仿真软件获取值 公式
    计算值
    (0.3°,−0.8°) $ \Delta {C_7} $ −0.0107 −0.0108
    $ \Delta {C_8} $ 0.0115 0.0108
    (−0.3°,−0.8°) $ \Delta {C_7} $ −0.0136 −0.0134
    $ \Delta {C_8} $ 0.0113 0.0110
    下载: 导出CSV

    表 5像差系数对失调量的敏感度

    Table 5.Sensitivity of the aberration coefficient to misalignment (632.8 nm/mm and 632.8 nm/°)

    C5 C6 C7 C8
    XDE 0.053 1.419 0.290 -0.001
    YDE −1.410 0.051 −0.0001 0.276
    ZDE −0.240 0.031 0.0129 0.139
    ADE 8.394 −2.396 −0.014 −2.600
    BDE 2.351 8.190 2.522 −0.0165
    下载: 导出CSV
  • [1] 张晓彬. 基于矢量像差理论的离轴反射系统失调校正研究[D]. 北京: 中国科学院大学, 2018.

    ZHANG X B. Research on misalignment correction in off-axis reflective systems based on nodal aberration theory[D]. Beijing: University of Chinese Academy of Sciences, 2018. (in Chinese)
    [2] 鞠国浩. 离轴反射式天文望远镜主动光学波前控制方法研究[D]. 北京: 中国科学院大学, 2017.

    JU G H. Research on active optical wavefront control methods for off-axis reflective astronomical telescopes[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese)
    [3] 赵文才. 改进的离轴三反光学系统的设计[J]. 光学 精密工程,2011,19(12):2837-2843.doi:10.3788/OPE.20111912.2837

    ZHAO W C. Design of improved off-axial TMA optical systems[J].Optics and Precision Engineering, 2011, 19(12): 2837-2843. (in Chinese)doi:10.3788/OPE.20111912.2837
    [4] 杨飞, 安其昌, 张静, 等. 大口径光学系统的镜面视宁度检测[J]. 光学 精密工程,2017,25(10):2572-2579.doi:10.3788/OPE.20172510.2572

    YANG F, AN Q CH, ZHANG J,et al. Seeing metrology of large aperture mirror of telescope[J].Optics and Precision Engineering, 2017, 25(10): 2572-2579. (in Chinese)doi:10.3788/OPE.20172510.2572
    [5] 沙巍, 陈长征, 许艳军, 等. 离轴三反空间相机主三镜共基准一体化结构[J]. 光学 精密工程,2015,23(6):1612-1619.doi:10.3788/OPE.20152306.1612

    SHA W, CHEN C ZH, XU Y J,et al. Integrated primary and tertiary mirror components from common base line of off-axis TMA space camera[J].Optics and Precision Engineering, 2015, 23(6): 1612-1619. (in Chinese)doi:10.3788/OPE.20152306.1612
    [6] 张磊, 刘东, 师途, 等. 光学自由曲面面形检测技术[J]. 中国光学,2017,10(3):283-299.doi:10.3788/co.20171003.0283

    ZHANG L, LIU D, SHI T,et al. Optical free-form surfaces testing technologies[J].Chinese Optics, 2017, 10(3): 283-299. (in Chinese)doi:10.3788/co.20171003.0283
    [7] 康健, 宣斌, 谢京江. 表面改性碳化硅基底反射镜加工技术现状[J]. 中国光学,2013,6(6):824-833.

    KANG J, XUAN B, XIE J J. Manufacture technology status of surface modified silicon carbide mirrors[J].Chinese Optics, 2013, 6(6): 824-833. (in Chinese)
    [8] BAI X Q, XU B Q, MA H C,et al. Aberration fields of pupil-offset off-axis two-mirror astronomical telescopes induced by ROC error[J].Optics Express, 2020, 28(21): 30447-30465.doi:10.1364/OE.403470
    [9] BAI X Q, XU B Q, JU G H,et al. Aberration compensation strategy for the radius of curvature error of the primary mirror in off-axis three-mirror anastigmatic telescopes[J].Applied Optics, 2021, 60(21): 6199-6212.doi:10.1364/AO.431908
    [10] JU G H, YAN CH X, GU ZH Y,et al. Aberration fields of off-axis two-mirror astronomical telescopes induced by lateral misalignments[J].Optics Express, 2016, 24(21): 24665-24703.doi:10.1364/OE.24.024665
    [11] JU G H, YAN CH X, GU ZH Y,et al. Nonrotationally symmetric aberrations of off-axis two-mirror astronomical telescopes induced by axial misalignments[J].Applied Optics, 2018, 57(6): 1399-1409.doi:10.1364/AO.57.001399
    [12] JU G H, MA H C, YAN CH X. Aberration fields of off-axis astronomical telescopes induced by rotational misalignments[J].Optics Express, 2018, 26(19): 24816-24834.doi:10.1364/OE.26.024816
    [13] 顾志远, 颜昌翔, 李晓冰, 等. 改进的灵敏度矩阵法在离轴望远镜装调中的应用[J]. 光学 精密工程,2015,23(9):2595-2604.doi:10.3788/OPE.20152309.2595

    GU ZH Y, YANG CH X, LI X B,et al. Application of modified sensitivity matrix method in alignment of off-axis telescope[J].Optics and Precision Engineering, 2015, 23(9): 2595-2604. (in Chinese)doi:10.3788/OPE.20152309.2595
    [14] HUANG Y F, LI L. Novel method of computer-aided alignment for large aperture space systems[J].Proceedings of SPIE, 2010, 7655: 76550T.doi:10.1117/12.867688
    [15] SHACK R V, THOMPSON K. Influence of alignment errors of a telescope system on its aberration field[J].Proceedings of SPIE, 1980, 251: 146-153.doi:10.1117/12.959464
    [16] THOMPSON K P. Aberration fields in tilted and decentered optical systems[D]. Tucson, Arizona: The University of Arizona, 1980.
    [17] BAI X Q, JU G H, MA H C,et al. Aberrational interactions between axial and lateral misalignments in pupil-offset off-axis two-mirror astronomical telescopes[J].Applied Optics, 2019, 58(28): 7693-7707.doi:10.1364/AO.58.007693
    [18] 潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社, 2004.

    PAN J H.The Design,Manufacture and Test of the Aspherical Optical Surfaces[M]. Suzhou: Suzhou University Press, 2004. (in Chinese)
    [19] WILSON R N.Reflecting Telescope Optics[M]. Berlin, Heidelberg: Springer, 2004.
    [20] BAI X Q, JU G H, XU B Q,et al. Active alignment of space astronomical telescopes by matching arbitrary multi-field stellar image features[J].Optics Express, 2021, 29(15): 24446-24465.doi:10.1364/OE.432412
    [21] SCHMID T, THOMPSON K P, ROLLAND J P. Misalignment-induced nodal aberration fields in two-mirror astronomical telescopes[J].Applied Optics, 2010, 49(16): D131-D144.doi:10.1364/AO.49.00D131
  • 加载中
图(10)/ 表(5)
计量
  • 文章访问数:873
  • HTML全文浏览量:547
  • PDF下载量:240
  • 被引次数:0
出版历程
  • 收稿日期:2021-08-30
  • 录用日期:2022-01-06
  • 修回日期:2021-09-24
  • 网络出版日期:2022-01-12

目录

    /

      返回文章
      返回
        Baidu
        map