Analysis of photoelectric characteristics of a light-damaged schottky perovskite detector
-
摘要:
为了研究飞秒 对光电探测器光学性能的影响,本文对飞秒脉冲 辐照CsPbBr3背靠背肖特基光电探测器的损伤特性,以及不同 功率密度下的光电性能进行了研究。利用化学气相沉积法在ITO叉指电极上沉积CsPbBr3微米晶薄膜,制备了背靠背肖特基型全无机钙钛矿光电探测器。利用脉冲宽度为35 fs的钛宝石飞秒 器辐照CsPbBr3光电探测器,通过显微镜观察不同 功率密度下CsPbBr3多晶薄膜的损伤形貌,并研究了不同功率密度损伤下肖特基结构的钙钛矿光电探测器的光电性能变化。结果表明:自制的全无机金属卤化物肖特基光电探测器具有较高的损伤阈值,达到了2.1 W/cm2,并且在样品轻度损伤的情况下,样品的光电特性出现了一定程度的提升,光谱响应度出现了50 nm的展宽,并且在部分薄膜受热脱落后,器件仍然保持一定的光电探测性能。
Abstract:To understand the effects of femtosecond lasers on the optical performance of the photodetectors, the damage characteristics of a CsPbBr3back-to-back Schottky photodetector irradiated by femtosecond pulses and its photoelectric performance under various laser energy densities were evaluated. A CsPbBr3microcrystal film on the ITO interdigital electrode was deposited by chemical vapor deposition and a back-to-back Schottky type all-inorganic perovskite photodetector was prepared. The CsPbBr3photodetector was irradiated by a Ti:Sapphire femtosecond laser with a pulse width of 35 fs. The damage morphology of the CsPbBr3polycrystalline film under different laser energy densities was observed using a microscope, and the photoelectric performance of the Schottky-structure perovskite photodetector damaged under different energy densities was evaluated. Results suggest that the damage threshold of the self-made all-inorganic metal halide Schottky photodectector is as high as 2.1 W/cm2, and when the sample is slightly damaged, the photoelectric characteristics of the sample are improved to a certain extent and the spectral responsivity is broadened by 50 nm. As part of the film is heated off, the sample still maintains a certain level of detection performance.
-
-
[1] 田灿灿. 全无机钙钛矿CVD制备方法及光电器件的研制[D]. 北京: 中国科学院大学, 2019.TIAN C C.CVD method synthesized all-inorganic perovskite and its development of optoelectronic devices[D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese) [2] 秦昱, 林珍华, 常晶晶, 等. 印刷钙钛矿太阳能电池研究进展[J]. 中国光学,2019,12(5):1015-1027.doi:10.3788/co.20191205.1015QIN Y, LIN ZH H, CHANG J J,et al. Research progress of printed perovskite solar cells[J].Chinese Optics, 2019, 12(5): 1015-1027. (in Chinese)doi:10.3788/co.20191205.1015 [3] 刘艳珍, 李国辉, 崔艳霞, 等. 钙钛矿光电探测器的研究进展[J]. 与光电子学进展,2019,56(1):010001.LIU Y ZH, LI G H, CUI Y X,et al. Research progress in perovskite photodetectors[J].Laser&Optoelectronics Progress, 2019, 56(1): 010001. (in Chinese) [4] 王兰, 董渊, 高嵩, 等. 钙钛矿材料在 领域的研究进展[J]. 中国光学,2019,12(5):993-1014.doi:10.3788/co.20191205.0993WANG L, DONG Y, GAO S,et al. Research progress of perovskite materials in the field of lasers[J].Chinese Optics, 2019, 12(5): 993-1014. (in Chinese)doi:10.3788/co.20191205.0993 [5] 李今朝, 曹焕奇, 张超, 等. 气相辅助刮刀涂布法制备钙钛矿薄膜[J]. 中国光学,2019,12(5):1028-1039.doi:10.3788/co.20191205.1028LI J ZH, CAO H Q, ZHANG CH,et al. Vapor assisted doctor blading process to fabricate perovskite thin films[J].Chinese Optics, 2019, 12(5): 1028-1039. (in Chinese)doi:10.3788/co.20191205.1028 [6] WANG Y P, SUN X, SHIVANNA R,et al. Photon transport in one-dimensional incommensurately epitaxial CsPbX3arrays[J].Nano Letters, 2016, 16(12): 7974-7981.doi:10.1021/acs.nanolett.6b04297 [7] PARK K, LEE J W, KIM J D,et al. Light-matter interactions in cesium lead halide perovskite nanowire lasers[J].The Journal of Physical Chemistry Letters, 2016, 7(18): 3703-3710.doi:10.1021/acs.jpclett.6b01821 [8] ZHOU H, YUAN SH P, WANG X X,et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section[J].ACS Nano, 2017, 11(2): 1189-1195.doi:10.1021/acsnano.6b07374 [9] HUANG L, GAO Q G, SUN L D,et al. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance[J].Advanced Materials, 2018, 30(27): 1800596.doi:10.1002/adma.201800596 [10] ZHANG Q, SU R, LIU X F,et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets[J].Advanced Functional Materials, 2016, 26(34): 6238-6245.doi:10.1002/adfm.201601690 [11] ZHAO L Y, GAO Y, SU M,et al. Vapor-phase incommensurate heteroepitaxy of oriented single-crystal CsPbBr3on GaN: toward integrated optoelectronic applications[J].ACS Nano, 2019, 13(9): 10085-10094.doi:10.1021/acsnano.9b02885 [12] 李方涛. 卤铅钙钛矿的可控制备及其 性质调控研究[D]. 北京: 北京科技大学, 2021.LI F T.Research on controllable preparation of lead halide perovskite and it’s lasing property regulation[D]. Beijing: University of Science and Technology Beijing, 2021. (in Chinese) [13] ZHONG Y G, LIAO K, DU W N,et al. Large-scale thin CsPbBr3single-crystal film grown on sapphireviachemical vapor deposition: toward laser array application[J].ACS Nano, 2020, 14(11): 15605-15615.doi:10.1021/acsnano.0c06380 [14] DONG Q F, FANG Y J, SHAO Y CH,et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3single crystals[J].Science, 2015, 347(6225): 967-970.doi:10.1126/science.aaa5760 [15] DONG Y H, GU Y, ZOU Y SH,et al. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect[J].Small, 2016, 12(40): 5622-5632.doi:10.1002/smll.201602366 [16] SHAIKH P A, SHI D, RETAMAL J R D,et al. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection[J].Journal of Materials Chemistry C, 2016, 4(35): 8304-8312.doi:10.1039/C6TC02828D [17] GUAN X W, HU W J, HAQUE A,et al. Light-responsive ion-redistribution-induced resistive switching in hybrid perovskite schottky junctions[J].Advanced Functional Materials, 2018, 28(3): 1704665.doi:10.1002/adfm.201704665 [18] 郑长彬, 邵俊峰, 李雪雷, 等. 飞秒脉冲 对硅基多层膜损伤特性[J]. 中国光学,2019,12(2):371-381.doi:10.3788/co.20191202.0371ZHENG CH B, SHAO J F, LI X L,et al. Femtosecond pulsed laser induced damage characteristics on Si-based multi-layer film[J].Chinese Optics, 2019, 12(2): 371-381. (in Chinese)doi:10.3788/co.20191202.0371