[1] |
YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J].Physical Review Letters, 1987, 58(20): 2059-2062.doi:10.1103/PhysRevLett.58.2059
|
[2] |
JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J].Physical Review Letters, 1987, 58(23): 2486-2489.doi:10.1103/PhysRevLett.58.2486
|
[3] |
苏安, 蒙成举, 唐秀福, 等. 对称结构光子晶体的表面光学Tamm态[J]. 红外与 工程,2019,48(8):0817001.doi:10.3788/IRLA201948.0817001SU A, MENG CH J, TANG X F,et al. Optical Tamm state on the surface of photonic crystal of symmetric structure[J].Infrared and Laser Engineering, 2019, 48(8): 0817001. (in Chinese)doi:10.3788/IRLA201948.0817001
|
[4] |
李天琦, 毛小洁, 雷健, 等. 固体 器与光纤 器对光子晶体光纤棒耦合的分析与对比[J]. 中国光学,2018,11(6):958-973.doi:10.3788/co.20181106.0958LI T Q, MAO X J, LEI J,et al. Analysis and comparison of solid-state lasers and fiber lasers on the coupling of rod-type photonic crystal fiber[J].Chinese Optics, 2018, 11(6): 958-973. (in Chinese)doi:10.3788/co.20181106.0958
|
[5] |
许江勇, 周波, 苏安, 等. 左右手材料光子晶体带隙及表面波局域电场特性[J]. 红外与 工程,2020,49(9):20200052.doi:10.3788/IRLA20200052XU J Y, ZHOU B, SU A,et al. Band gap and local electric field characteristics of surface waves in left-handed and right-handed materials of photonic crystal[J].Infrared and Laser Engineering, 2020, 49(9): 20200052. (in Chinese)doi:10.3788/IRLA20200052
|
[6] |
苏安, 蒙成举, 江思婷, 等. 复介质对光量子阱光传输特性的激活效应[J]. 中国光学,2020,13(2):396-410.doi:10.3788/co.20201302.0396SU A, MENG CH J, JIANG S T,et al. Activation effect of complex medium on the optical propagation properties of optical quantum well[J].Chinese Optics, 2020, 13(2): 396-410. (in Chinese)doi:10.3788/co.20201302.0396
|
[7] |
申家岭, 路元刚, 马海霞, 等. 基于双缺陷一维光子晶体的非线性 限幅方法[J]. 中国 ,2019,46(8):0808001.doi:10.3788/CJL201946.0808001SH J L, LU Y G, MA H X,et al. Nonlinear laser-limiting method based on one-dimensional photonic crystals with double defects[J].Chinese Journal of Lasers, 2019, 46(8): 0808001. (in Chinese)doi:10.3788/CJL201946.0808001
|
[8] |
潘文亮, 武校刚, 卢禹昊, 等. 一维缺陷型光子晶体湿敏特性研究[J]. 量子光学学报,2020,26(4):382-391.PAN W L, WU X G, LU Y H,et al. Study on the characteristics of humidity sensitive for one-dimensional photonic crystal with defects[J].Journal of Quantum Optics, 2020, 26(4): 382-391. (in Chinese)
|
[9] |
苏安, 王高峰, 蒙成举, 等. 光子晶体二元缺陷微腔的光传输特性[J]. 红外与 工程,2017,46(6):0620004.doi:10.3788/IRLA201746.0620004SU A, WANG G F, MENG CH J,et al. Light propagation characteristic of dual defect microcavity of photonic crystal[J].Infrared and Laser Engineering, 2017, 46(6): 0620004. (in Chinese)doi:10.3788/IRLA201746.0620004
|
[10] |
BRUNA M, BORINI S. Optical constants of graphene layers in the visible range[J].Applied Physics Letters, 2009, 94(3): 031901.doi:10.1063/1.3073717
|
[11] |
SANG D K, WANG H D, GUO ZH N,et al. Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications[J].Advanced Functional Materials, 2019, 29(45): 1903419.doi:10.1002/adfm.201903419
|
[12] |
ZHANG L, GONG T, YU ZH Q,et al. Recent advances in hybridization, doping, and functionalization of 2D xenes[J].Advanced Functional Materials, 2021, 31(1): 2005471.doi:10.1002/adfm.202005471
|
[13] |
WANG Y ZH, WU Q, WANG H D,et al. Thermally tunable microfiber knot resonator with flexible graphene heater[J].Chinese Optics Letters, 2021, 19(5): 051301.doi:10.3788/COL202119.051301
|
[14] |
ZHANG Y T. Photon-assisted Fano resonance tunneling periodic double-well potential characteristics[J].Chinese Optics, 2021, 14(5): 1251-1258.doi:10.37188/CO.2020-0068
|
[15] |
曹暾, 刘宽, 李阳, 等. 可调谐光学超构材料及其应用[J]. 中国光学,2021,14(4):968-985.doi:10.37188/CO.2021-0080CAO T, LIU K, LI Y,et al. Tunable optical metamaterials and their applications[J].Chinese Optics, 2021, 14(4): 968-985. (in Chinese)doi:10.37188/CO.2021-0080
|
[16] |
赵娟平. 单层石墨烯电子结构、光学与热力学性能研究[D]. 汉中: 陕西理工大学, 2019: 1-59.ZHAO J P. Study on electronic structure, optics and thermodynamic properties of single layer graphene[D]. Hanzhong: Shaanxi University of Technology, 2019: 1-59. (in Chinese)
|
[17] |
王磊, 李培丽. 基于光学Tamm态的石墨烯光开关的研究[J]. 光通信研究,2018(5):59-62.WANG L, LI P L. Study on graphene optical switch based on optical Tamm states[J].Study on Optical Communications, 2018(5): 59-62. (in Chinese)
|
[18] |
王磊, 栾开智, 左依凡, 等. 基于光学Tamm态的石墨烯光调制器[J]. 中国 ,2018,45(11):1106001.doi:10.3788/CJL201845.1106001WANG L, LUAN K ZH, ZUO Y F,et al. Graphene optical modulator based on optical Tamm states[J].Chinese Journal of Lasers, 2018, 45(11): 1106001. (in Chinese)doi:10.3788/CJL201845.1106001
|
[19] |
莫军, 冯国英, 杨莫愁, 等. 基于石墨烯的宽带全光空间调制器[J]. 物理学报,2018,67(21):214201.doi:10.7498/aps.67.20180307MO J, FENG G Y, YANG M CH,et al. Graphene-based broadband all-optical spatial modulator[J].Acta Physica Sinica, 2018, 67(21): 214201. (in Chinese)doi:10.7498/aps.67.20180307
|
[20] |
高金霞, 兰云蕾, 武继江. 基于光子晶体异质结构的磁可调石墨烯多带吸收[J]. 发光学报,2020,41(5):624-630.doi:10.3788/fgxb20204105.0624GAO J X, LAN Y L, WU J J. Magnetically tunable multi-band absorption of graphene based on photonic crystal heterostructure[J].Chinese Journal of Luminescence, 2020, 41(5): 624-630. (in Chinese)doi:10.3788/fgxb20204105.0624
|
[21] |
YI L J, LI CH H. Light enhanced absorption of graphene based on parity-time symmetry structure[J].Chinese Journal of Luminescence, 2022, 43(1): 119-128.doi:10.37188/CJL.20210322
|
[22] |
刘金萍, 李欣, 王瑞荣, 等. 诱导聚二甲基硅氧烷制备石墨烯量子点[J]. 发光学报,2021,42(12):1900-1905.doi:10.37188/CJL.20210251LIU J P, LI X, WANG R R,et al. Preparation of graphene quantum dots by laser-induced polydimethylsiloxane[J].Chinese Journal of Luminescence, 2021, 42(12): 1900-1905. (in Chinese)doi:10.37188/CJL.20210251
|
[23] |
王晓愚, 毕卫红, 崔永兆, 等. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究[J]. 物理学报,2020,69(19):194202.doi:10.7498/aps.69.20200750WANG X Y, BI W H, CUI Y ZH,et al. Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition[J].Acta Physica Sinica, 2020, 69(19): 194202. (in Chinese)doi:10.7498/aps.69.20200750
|
[24] |
KAIPA C S R, YAKOVLEV A B, HANSON G W,et al. Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies[J].Physical Review B, 2012, 85(24): 245407.doi:10.1103/PhysRevB.85.245407
|