留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂曲面零件面结构光扫描视点规划

任明阳,王立忠,赵建博,唐正宗

downloadPDF
任明阳, 王立忠, 赵建博, 唐正宗. 复杂曲面零件面结构光扫描视点规划[J]. , 2023, 16(1): 113-126. doi: 10.37188/CO.2022-0026
引用本文: 任明阳, 王立忠, 赵建博, 唐正宗. 复杂曲面零件面结构光扫描视点规划[J]. , 2023, 16(1): 113-126.doi:10.37188/CO.2022-0026
REN Ming-yang, WANG Li-zhong, ZHAO Jian-bo, TANG Zheng-zong. Viewpoint planning of surface structured light scanning for complex surface parts[J]. Chinese Optics, 2023, 16(1): 113-126. doi: 10.37188/CO.2022-0026
Citation: REN Ming-yang, WANG Li-zhong, ZHAO Jian-bo, TANG Zheng-zong. Viewpoint planning of surface structured light scanning for complex surface parts[J].Chinese Optics, 2023, 16(1): 113-126.doi:10.37188/CO.2022-0026

复杂曲面零件面结构光扫描视点规划

doi:10.37188/CO.2022-0026
基金项目:国家自然科学基金资助项目(No. 51865057)
详细信息
    作者简介:

    任明阳(1995—),男,河南周口人,硕士研究生,2017年于长安大学获得学士学位,主要从事三维光学测量方面的研究。E-mail:18829040656@163.com

    王立忠(1968—),男,山东梁山人,博士,教授,博士生导师,2004年于西安交通大学获得博士学位,主要从事三维光学测量技术的研究。E-mail:wanglz@mail.xjtu.edu.cn

  • 中图分类号:TP391.4;O348.1

Viewpoint planning of surface structured light scanning for complex surface parts

Funds:Supported by National Natural Science Foundation of China (No. 51865057)
More Information
  • 摘要:

    为了实现复杂曲面零件高效自动化测量,本文提出了一种基于改进栅格法的面结构光扫描视点规划方法,并将其应用在汽车复杂曲面零件自动化测量中。首先,针对人工示教视点冗余严重,扫描完整性差的问题,提出了一种基于改进栅格法的面结构光扫描视点规划算法,根据面结构光扫描仪的有效测量范围,确定栅格尺寸,改进候选视点生成策略,并通过扫描仪的测量约束条件得到候选视点的有效测量范围,利用视点质量评价函数确定最优视点。其次,针对视点规划过程中算法耗时长,特征重建精度低的问题,采用体素网格法简化模型,通过八叉树算法分割复杂曲面模型,根据法向量一致性误差确定体素网格尺寸,并且对于几何特征不同的模型,分析权重系数对扫描质量的影响,给出最佳权重系数。最后,进行了汽车钣金件和减速器壳体扫描视点规划和测量实验。结果表明,汽车钣金件视点规划耗时21.93 s,扫描完整性为99.124%,扫描精度为0.025 mm;汽车减速器壳体视点规划耗时158.29 s,扫描完整性为93.231%,扫描精度为0.032 mm。本方法能快速完成复杂曲面视点规划,并且采用规划视点扫描的模型完整性好,精度高,能够满足复杂曲面零件自动测量的要求。

  • 图 1面结构光三维扫描系统

    Figure 1.Surface structured light 3D scanning system

    图 2单目/双目相机有效测量范围示意图

    Figure 2.Schematic diagram of effective measuring range for monocular camera and binocular cameras

    图 3双目扫描仪有效测量范围和栅格单元示意图

    Figure 3.Effective measuring range of binocular scanner and schematic diagram of grid cell

    图 4候选视点生成示意图

    Figure 4.Schematic diagram of candidate viewpoint generation

    图 5光学参数约束判定

    Figure 5.Determination of the optical parameter constraint

    图 6单目相机可视性判定

    Figure 6.Determination of monocular camera visibility

    图 7双目相机可视性判定

    Figure 7.Determination of binocular camera visibility

    图 8可视性约束的判定示意图

    Figure 8.Schematic diagram of visibility constraints determination

    图 9遮挡约束的判定示意图

    Figure 9.Schematic diagram of occlusion constraints determination

    图 10二维平面相交检测示意图

    Figure 10.Schematic diagram of 2D plane intersection detection

    图 11最优视点筛选流程

    Figure 11.Optimal view point screening process

    图 12待检测工件

    Figure 12.Workpiece to be tested

    图 13法向量一致性示意图

    Figure 13.Schematic diagram of normal vector consistency

    图 14汽车钣金件和减速器壳体不同体素尺寸法向量一致性误差及耗时

    Figure 14.Normal vector consistency errors and consuming times of automobile sheet metal parts and reducer shell

    图 15汽车钣金件扫描覆盖率

    Figure 15.Scanning coverage of automobile sheet metal parts

    图 16权重系数对钣金件扫描质量的影响

    Figure 16.Influence of weight coefficient on scanning quality for sheet metal parts

    图 17减速器壳体扫描覆盖率

    Figure 17.Scanning coverage of reducer sheet

    图 18权重系数对减速器壳体扫描质量的影响

    Figure 18.Influence of weight coefficient on the scanning quality for reducer shell

    图 19(a)复杂曲面自动化测量实验系统及(b)示意图

    Figure 19.(a) Experimental system for automatic measurement of complex surfaces and (b) its schematic diagram

    图 20汽车钣金件视点生成及扫描效果示意图

    Figure 20.Viewpoint generation and scanning effect of automobile sheet metal parts

    图 21减速器壳体实际扫描效果图

    Figure 21.Actual scanning rendering of reducer shell

    表 1体素网格扫描质量评价指标

    Table 1.Quality evaluation indexes of voxel mesh

    角度范围(°) 0<φ<25 25<φ<50 50<φ<75 75<φ
    扫描质量 优秀 良好 中等
    下载: 导出CSV
  • [1] 洪华杰, 甘子豪, 何科延, 等. 用于曲面轮廓测量的结构光视觉技术研究[J]. 自动化仪表,2021,42(7):1-5.

    HONG H J, GAN Z H, HE K Y,et al. Research on structured light vision technology for surface contour measurement[J].Process Automation Instrumentation, 2021, 42(7): 1-5. (in Chinese)
    [2] 王永红, 张倩, 胡寅, 等. 显微条纹投影小视场三维表面成像技术综述[J]. 中国光学,2021,14(3):447-457.doi:10.37188/CO.2020-0199

    WANG Y H, ZHANG Q, HU Y,et al. 3D small-field surface imaging based on microscopic fringe projection profilometry: a review[J].Chinese Optics, 2021, 14(3): 447-457. (in Chinese)doi:10.37188/CO.2020-0199
    [3] 杜明鑫, 闫钰锋, 张燃, 等. 基于透镜阵列的三维姿态角度测量[J]. 中国光学,2022,15(1):45-55.doi:10.37188/CO.2021-0129

    DU M X, YAN Y F, ZHANG R,et al. 3D position angle measurement based on a lens array[J].Chinese Optics, 2022, 15(1): 45-55. (in Chinese)doi:10.37188/CO.2021-0129
    [4] 陈仁虹, 梁晋, 叶美图, 等. 柔性复合薄膜成形极限曲线的视觉测定方法[J]. 中国光学,2022,15(1):22-33.doi:10.37188/CO.2021-0101

    CHEN R H, LIANG J, YE M T,et al. Visual method for measuring forming limit curve of pliable composite film[J].Chinese Optics, 2022, 15(1): 22-33. (in Chinese)doi:10.37188/CO.2021-0101
    [5] GERBINO S, DEL GIUDICE D M, STAIANO G,et al. On the influence of scanning factors on the laser scanner-based 3D inspection process[J].The International Journal of Advanced Manufacturing Technology, 2016, 84(9): 1787-1799.
    [6] PHAN N D M, QUINSAT Y, LAVERNHE S,et al. Scanner path planning with the control of overlap for part inspection with an industrial robot[J].The International Journal of Advanced Manufacturing Technology, 2018, 98(1): 629-643.
    [7] 廖一帆. 基于视点规划的自动三维重建关键技术研究[D]. 深圳: 深圳大学, 2019: 22-25.

    LIAO Y F. Research on key techniques of automatic 3D reconstruction based on viewpoint planning[D]. Shenzhen: Shenzhen University, 2019: 22-25. (in Chinese)
    [8] 郭一佟. 三维面扫描测量机器人路径规划研究与实现[D]. 合肥: 合肥工业大学, 2020: 34-41.

    GUO Y T. Research and implementation of path planning algorithm for robotic 3D areal scanners[D]. Hefei: Hefei University of Technology, 2020: 34-41. (in Chinese)
    [9] LEE I D, SEO J H, KIM Y M,et al. Automatic pose generation for robotic 3-D scanning of mechanical parts[J].IEEE Transactions on Robotics, 2020, 36(4): 1219-1238.doi:10.1109/TRO.2020.2980161
    [10] MARTINS F A R, GARCÍA-BERMEJO J G, CASANOVA E Z,et al. Automated 3D surface scanning based on CAD model[J].Mechatronics, 2005, 15(7): 837-857.doi:10.1016/j.mechatronics.2005.01.004
    [11] LARTIGUE C, QUINSAT Y, MEHDI-SOUZANI C,et al. Voxel-based path planning for 3D scanning of mechanical parts[J].Computer-Aided Design and Applications, 2014, 11(2): 220-227.doi:10.1080/16864360.2014.846096
    [12] 韩沛文. 面结构光自动化三维测量中视点生成与路径规划关键技术研究[D]. 武汉: 华中科技大学, 2018: 19-24.

    HAN P W. Research on key technique of viewpoint generation and path planning for automated surface structured-light 3D measurement[D]. Wuhan: Huazhong University of Science and Technology, 2018: 19-24. (in Chinese)
    [13] 李中伟, 张攀, 钟凯, 等. AutoScan系列复杂零件自动化三维测量装备开发与应用[J]. 航空学报,2021,42(10):112-129.

    LI ZH W, ZHANG P, ZHONG K,et al. Development and application of AutoScan series automated 3D measuring equipment for complex parts[J].Acta Aeronauticaet Astronautica Sinica, 2021, 42(10): 112-129. (in Chinese)
  • 加载中
图(21)/ 表(1)
计量
  • 文章访问数:610
  • HTML全文浏览量:293
  • PDF下载量:256
  • 被引次数:0
出版历程
  • 收稿日期:2022-02-22
  • 修回日期:2022-03-11
  • 网络出版日期:2022-06-16

目录

    /

      返回文章
      返回
        Baidu
        map