Measurement repeatability of high power laser measuring device based on light pressure
-
摘要:
测量重复性是光压测量装置的最大不确定度分量,直接影响测量结果的准确性。为了在高功率 测量过程中提高功率测量的准确度,搭建了基于光压的高功率 测量装置,进行了质量测量重复性实验和 功率测量重复性实验,对两个实验的结果进行了比较分析。实验结果显示,光压测量装置的测量重复性随被测质量和被测功率的增大而逐渐降低,表明光压方法在测量高功率 时更具优势。在 功率测量重复性实验中,由于避免了偏载和气流扰动的影响,因此 功率测量重复性优于根据等效质量计算的测量重复性。研究结果对后续进一步提高光压方法的测量准确度具有指导意义。
Abstract:Measurement repeatability is the largest uncertainty component of a light pressure based measurement device, which directly affects the accuracy of the measurement results. In order to improve the accuracy of the measurement power in the process of high-power laser measurement, a high-power laser measuring device based on light pressure is built. Quality measurement repeatability and laser power measurement repeatability experiments were carried out, and the results of the two experiments were compared and analyzed. The experimental results show that the measurement repeatability of the light pressure measuring device gradually decreased with the increase of the measured mass and the measured laser power, indicating that the light pressure method has more advantages in measuring high-power lasers. In the laser power measurement repeatability experiment, the influence of eccentric loads and airflow disturbance is avoided, so the laser power measurement repeatability is better than the measurement repeatability calculated according to the equivalent mass. The research results have guiding significance for further improving the measurement accuracy of the light pressure method in the future.
-
Key words:
- high power laser /
- light pressure /
- measurement repeatability /
- mass
-
表 1 理论计算与实际测量的重复性比较
Table 1. Comparison of repeatability between theoretical calculation and actual measurement
Laser
Power
/kWEquivalent
mass
/mgCalculated
synthetic
repeatability/%
(${m_r}$=7 μg)Calculated
synthetic
repeatability/%
(${m_r}$=5 μg)Measured
laser power
repeatability
y/%1.00 0.64 1.098 0.788 0.791 2.00 1.28 0.556 0.403 0.429 3.00 1.92 0.378 0.279 0.321 4.00 2.56 0.291 0.219 0.196 5.00 3.20 0.241 0.186 0.201 6.00 3.84 0.208 0.164 0.211 表 2 光压测量装置测量不确定度结果
Table 2. Uncertainty budgets of light pressure measuring device
Uncertainty
componentType 1 kW
(0.64 mg)3 kW
(1.92 mg)6 kW
(3.84 mg)Uncertainty of
standard weightsB 0.0016 0.0005 0.0003 Mirror reflectivity B 0.0003 0.0003 0.0003 Incidence angle B 0.0030 0.0030 0.0030 Repeatability A 0.0079 0.0032 0.0021 Resolution B 0.0045 0.0015 0.0008 Nonlinearity B 0.0010 0.0010 0.0010 Standard uncertainty (k=1) 0.976% 0.476% 0.390% Expanded uncertainty (k=2) 1.95% 0.96% 0.78% 表 3 光压法与量热法测量结果比较
Table 3. Comparison of measurement results between the light pressure method and the calorimetric method
Measured power of calorimetric power meter/kW Measured mass/mg Measured power of light pressure power meter/kW Relative deviation/% 0.996 0.644 1.007 1.10 1.997 1.289 2.015 0.90 2.979 1.919 3.001 0.74 3.960 2.550 3.989 0.73 4.974 3.195 4.997 0.46 5.974 3.846 6.015 0.69 -
[1] 邓永丽, 李庆, 黄学杰. 锂离子动力电池极片的 切割分析[J]. 中国光学,2018,11(6):974-982. doi: 10.3788/co.20181106.0974DENG Y L, LI Q, HUANG X J. Analysis of laser cutting of lithium-ion power battery pole piece[J]. Chinese Optics, 2018, 11(6): 974-982. (in Chinese) doi: 10.3788/co.20181106.0974 [2] 张国栋, 程光华, 张伟. 超快 选区焊接技术研究进展[J]. 中国光学,2020,13(6):1209-1223. doi: 10.37188/CO.2020-0131ZHANG G D, CHENG G H, ZHANG W. Progress in ultrafast laser space-selective welding[J]. Chinese Optics, 2020, 13(6): 1209-1223. (in Chinese) doi: 10.37188/CO.2020-0131 [3] ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578. doi: 10.1016/j.pmatsci.2019.100578 [4] ABBASS M K. Laser surface treatment and modification of aluminum alloy matrix composites[J]. Lasers in Manufacturing and Materials Processing, 2018, 5(2): 81-94. doi: 10.1007/s40516-018-0054-6 [5] WILLIAMS P A, HADLER J A, CROMER C, et al. Flowing-water optical power meter for primary-standard, multi-kilowatt laser power measurements[J]. Metrologia, 2018, 55(3): 427-436. doi: 10.1088/1681-7575/aaae78 [6] 黎高平, 杨鸿儒, 杨斌, 等. 绝对吸收式 能量计高准确度校准技术研究[J]. 应用光学,2014,35(3):438-440,458.LI G P, YANG H R, YANG B, et al. High-accuracy optical calibration technology for absolute-absorbing laser energy meter[J]. Journal of Applied Optics, 2014, 35(3): 438-440,458. (in Chinese) [7] 黄麒力, 胡林林, 马国武, 等. 基于量热法的大功率毫米波功率测量及校准系统设计[J]. 强 与粒子束,2022,34(4):043005.HUANG Q L, HU L L, MA G W, et al. Design of high power millimeter wave power measurement and calibration system based on calorimetry[J]. High Power Laser and Particle Beams, 2022, 34(4): 043005. (in Chinese) [8] WILLIAMS P, HADLER J, MARING F, et al. Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure[J]. Optics Express, 2017, 25(4): 4382-4392. doi: 10.1364/OE.25.004382 [9] WILLIAMS P A, ARTUSIO-GLIMPSE A B, HADLER J A, et al. Radiation-pressure-enabled traceable laser sources at CW powers up to 50 kW[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(6): 1833-1839. doi: 10.1109/TIM.2018.2886108 [10] PINOT P, SILVESTRI Z. Optical power meter using radiation pressure measurement[J]. Measurement, 2019, 131: 109-119. doi: 10.1016/j.measurement.2018.07.087 [11] KECK L, SHAW G, THESKA R, et al. Design of an electrostatic balance mechanism to measure optical power of 100 kW[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7002909. [12] 孙青, 马冲, 林延东, 等. 基于光压原理的高功率 测量装置[J]. 中国 ,2021,48(3):0315002. doi: 10.3788/CJL202148.0315002SUN Q, MA CH, LIN Y D, et al. High-power laser measurement device based on light pressure principle[J]. Chinese Journal of Lasers, 2021, 48(3): 0315002. (in Chinese) doi: 10.3788/CJL202148.0315002 [13] MANSKE E, FRÖHLICH T, VASILYAN S. Photon momentum induced precision small forces: a static and dynamic check[J]. Measurement Science and Technology, 2019, 30(10): 105004. doi: 10.1088/1361-6501/ab257e [14] ARTUSIO-GLIMPSE A B, ROGERS K A, WILLIAMS P A, et al. High amplification laser-pressure optic enables ultra-low uncertainty measurements of optical laser power at kilowatt levels[J]. Metrologia, 2021, 58(5): 055010. doi: 10.1088/1681-7575/ac1e34 [15] VASILYAN S, LÓPEZ M, ROGGE N, et al. Revisiting the limits of photon momentum based optical power measurement method, employing the case of multi-reflected laser beam[J]. Metrologia, 2021, 58(1): 015006. doi: 10.1088/1681-7575/abc86e