-
摘要:
面向机载 差分吸收雷达对小型轻量化 光源的应用需求,研制了紧凑型自动调谐脉冲CO2 器。首先,研究了射频波导腔内光束和自由空间光学斩波光束孔径匹配关系,设计了具有实焦点的腔内光束变换系统,实验验证了斩波器通光孔径对 脉冲波形的影响。其次,研究了CO2 器的波长调谐特性,分析了相邻 谱线光栅衍射角度差,并基于高精度电动转台和金属闪耀光栅,实现了CO2 器波长自动调谐输出。最后,基于小型轻量化模块设计,完成了紧凑型自动调谐脉冲CO2 器集成。实验结果表明,该 器在1 kHz条件下运转稳定,脉冲宽度为350 ns,峰值功率为3.7 kW,在9.2~10.7 μm范围内测试到30条 谱线,重量为18 kg,本文研究为机载 差分吸收雷达提供了一种小型化探测光源。
Abstract:In order to meet the application requirements of airborne laser differential absorption lidar for small and lightweight light sources, a compact pulsed CO2laser is developed with automatic wavelength tuning. First, the aperture matching relationship between an RF waveguide intracavity beam and a free space optical chopper beam was studied, and a beam conversion system was designed with real focus on the intracavity. The influence of the chopper aperture on a laser pulse waveform was verified experimentally. Secondly, the wavelength tuning characteristics of CO2laser were studied, and the diffraction angle difference between adjacent laser spectral lines was analyzed. Tunable operation in the CO2laser was realized using a high-precision electric turntable and metal blazed grating. Finally, the integration of a compact automatic tuning pulsed CO2laser was completed using small lightweight modules. Experimental results indicate that the laser operates stably at 1 kHz with a pulse width of 350 ns and a peak power of 3.7 kW. There are 30 lines within 9.2~10.7 μm waveband. The total weight of the laser is 18 kg. It provides a miniaturized detection light source for airborne laser differential absorption lidar.
-
-
[1] CAO ZH, WEI CH Y, CHENG X,et al. Ground fused silica processed by combined chemical etching and CO2laser polishing with super-smooth surface and high damage resistance[J].Optics Letters, 2020, 45(21): 6014-6017.doi:10.1364/OL.409857 [2] 高月娟, 陈飞, 潘其坤, 等. 用于超短脉冲CO2 的半导体光开关理论建模与数值分析[J]. 中国光学,2020,13(3):577-585.GAO Y J, CHEN F, PAN Q K,et al. Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO2laser[J].Chinese Optics, 2020, 13(3): 577-585. (in Chinese) [3] 袁志国, 马修真, 刘晓楠, 等. 利用可调谐 吸收光谱技术的柴油机排放温度测试研究[J]. 中国光学,2020,13(2):281-289.doi:10.3788/co.20201302.0281YUAN ZH G, MA X ZH, LIU X N,et al. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J].Chinese Optics, 2020, 13(2): 281-289. (in Chinese)doi:10.3788/co.20201302.0281 [4] FAN S Y, HEALY N. CO2laser-based side-polishing of silica optical fibers[J].Optics Letters, 2020, 45(15): 4128-4131.doi:10.1364/OL.397939 [5] HE T, WEI CH Y, JIANG ZH G,et al. Numerical model and experimental demonstration of high precision ablation of pulse CO2laser[J].Chinese Optics Letters, 2018, 16(4): 041401.doi:10.3788/COL201816.041401 [6] POLYANSKIY M N, POGORELSKY I V, BABZIEN M,et al. Demonstration of a 2 ps, 5 TW peak power, long-wave infrared laser based on chirped-pulse amplification with mixed-isotope CO2amplifiers[J].OSA Continuum, 2020, 3(3): 459-472.doi:10.1364/OSAC.381467 [7] 曾庆栋, 袁梦甜, 朱志恒, 等. 便携式 诱导击穿光谱最新研究进展[J]. 中国光学,2021,14(3):470-486.doi:10.37188/CO.2020-0093ZENG Q D, YUAN M T, ZHU ZH H,et al. Research progress on portable laser-induced breakdown spectroscopy[J].Chinese Optics, 2021, 14(3): 470-486. (in Chinese)doi:10.37188/CO.2020-0093 [8] RUAN P, PAN Q K, XIE J J,et al. Rapidly tunable pulsed CO2laser based on acoustic-optic modulator[J].Infrared Physics&Technology, 2018, 92: 299-303. [9] TEHRANI M K, MOHAMMAD M M, JAAFARI E,et al. Setting up a mobile Lidar (DIAL) system for detecting chemical warfare agents[J].Laser Physics, 2015, 25(3): 035701.doi:10.1088/1054-660X/25/3/035701 [10] PAL A, CLARK C D, SIGMAN M,et al. Differential absorption lidar CO2laser system for remote sensing of TATP related gases[J].Applied Optics, 2009, 48(4): B145-B150.doi:10.1364/AO.48.00B145 [11] KARAPUZIKOV A I, PTASHNIK I V, SHERSTOV I V,et al. Modeling of helicopter-borne tunable TEA CO2DIAL system employment for detection of methane and ammonia leakages[J].Infrared Physics&Technology, 2000, 41(2): 87-96. [12] SZINICZ L. History of chemical and biological warfare agents[J].Toxicology, 2005, 214(3): 167-181.doi:10.1016/j.tox.2005.06.011 [13] BANDINI F, SUNDING T P, LINDE J,et al. Unmanned Aerial System (UAS) observations of water surface elevation in a small stream: comparison of radar altimetry, LIDAR and photogrammetry techniques[J].Remote Sensing of Environment, 2020, 237: 111487.doi:10.1016/j.rse.2019.111487 [14] PODOSKI J H, SMITH T D, FINNEGAN D C,et al. Unmanned aerial system lidar survey of two breakwaters in the Hawaiian islands[J].Coastal Engineering Proceedings, 2018, 1(36): 23.doi:10.9753/icce.v36.structures.23 [15] XIE J J, PAN Q K, GUO R H,et al. Dynamical analysis of acousto-optically Q-switched CO2laser[J].Optics and Lasers in Engineering, 2012, 50(2): 159-164.doi:10.1016/j.optlaseng.2011.09.014 [16] ZHANG Y CH, TIAN ZH SH, SUN ZH H,et al. Study of frequency stabilization for electro-opticalQ-switched radio-frequency-excited waveguide CO2laser using build-up time method[J].Applied Optics, 2013, 52(16): 3732-3736.doi:10.1364/AO.52.003732 [17] 潘其坤, 陈飞, 石宁宁, 等. 声光调Q CO2 器波长调谐理论分析与实验研究[J]. 红外与 工程,2017,46(7):0705002.doi:10.3788/IRLA201746.0705002PAN Q K, CHEN F, SHI N N,et al. Theoretical analysis and experimental research on tunable acousto-optic Q-switched CO2laser[J].Infrared and Laser Engineering, 2017, 46(7): 0705002. (in Chinese)doi:10.3788/IRLA201746.0705002