Panoramic bispectral infrared imaging interference spectrum measurement inversion instrument
-
摘要:
为了满足工业污染排放及突发安全事故对在线实时监测分析仪器的迫切需求,提出了全景双谱段红外成像干涉光谱测量反演仪器。通过双通道干涉系统、双谱段成像系统及方位俯仰轴系的协同设计,实现目标场景图像光谱信息的大视场、宽谱段、高分辨率测量。首先,根据傅立叶光学理论,建立了干涉成像光谱的标量衍射理论模型;然后,基于宽带采样与窄带采样理论,对双通道干涉系统进行采样设计,并在分析干涉成像特点的基础上,对双谱段成像系统进行光学设计;最后,研制了原理样机,并开展了烟囱排放气体烟羽的遥测实验。该仪器可以实现360°×60°大视场空间场景中3~5 μm和8~12 μm中长波红外光谱范围内4 cm−1分辨率的光谱测量,满足排放监测定性识别与定量分析的应用要求。
Abstract:In order to satisfy the urgent needs of on-line real-time monitoring and analysis instrument for industrial pollution emission and sudden safety accidents, a panoramic bispectral infrared imaging interference spectrum measurement inversion instrument is proposed. Through the collaborative design of dual channel interference system, dual spectral imaging system, azimuth and elevation axis system, the measurement of image spectrum information of target scene with large field of view, wide spectral band and high resolution is realized. First, based on Fourier optics theory, the scalar diffraction theoretical model of interference imaging spectrum is established. Then based on broadband sampling and narrowband sampling theory, the sampling design of dual channel interference system is carried out. Based on the analysis of the interference imaging characteristics, the optical design of the dual band imaging system is carried out. Finally, the principle prototype is completed, and the telemetry experiment of the gas plume emitted by the chimney is carried out. The instrument can realize spectral measurement with resolution of 4 cm−1in large field of view by 360°×60° and wide spectral range from 3~5 μm to 8~12 μm. The instrument can satisfy the application requirements of qualitative identification and quantitative analysis for gas emission monitoring.
-
-
[1] 程久庚, 苏朝晖. 原子力-红外光谱定量分析聚1-丁烯/聚丙烯共混物的相区组成[J]. 应用化学,2022,39(2):266-271.doi:10.19894/j.issn.1000-0518.210098CHENG J G, SU ZH H. Quantitative analysis of phase composition of poly (1-butene)/polypropylene blends by atomic force microscopy-infrared[J].Chinese Journal of Applied Chemistry, 2022, 39(2): 266-271. (in Chinese)doi:10.19894/j.issn.1000-0518.210098 [2] 张春晖, 刘西京, 章蓉, 等. 蒙药荜茇不同提取物的红外光谱[J]. 应用化学,2021,38(3):271-275.doi:10.19894/j.issn.1000-0518.200341ZHANG CH H, LIU X J, ZHANG R,et al. Infrared spectrum about the different extracts of fructus piperis longi[J].Chinese Journal of Applied Chemistry, 2021, 38(3): 271-275. (in Chinese)doi:10.19894/j.issn.1000-0518.200341 [3] 张琳, 朱顺官, 冯红艳, 等. 基于干涉图解析的被动式遥感FTIR分析[J]. 应用化学,2009,26(4):467-470.doi:10.3969/j.issn.1000-0518.2009.04.021ZHANG L, ZNU SH G, FENG H Y,et al. Interpretation of passive remote sensing FTIR spectra based on interferogram[J].Chinese Journal of Applied Chemistry, 2009, 26(4): 467-470. (in Chinese)doi:10.3969/j.issn.1000-0518.2009.04.021 [4] 高健华, 梁静秋, 吕金光, 等. 基于多级微反射镜的时空联合调制傅里叶变换成像光谱仪: 原理及数据处理[J]. 光谱学与光谱分析,2017,37(12):3932-3939.GAO J H, LIANG J Q, LV J G,et al. A stepped mirror based temporally and spatially modulated imaging Fourier transform spectrometer: principle and data processing[J].Spectroscopy and Spectral Analysis, 2017, 37(12): 3932-3939. (in Chinese) [5] 吕金光, 梁静秋, 梁中翥, 等. 基于多级微镜的傅里叶变换成像光谱仪干涉成像系统分析与设计[J]. 光谱学与光谱分析,2016,36(5):1554-1559.LV J G, LIANG J Q, LIANG ZH ZH,et al. Analysis and design of interference imaging system in Fourier transform imaging spectrometer based on multi-micro-mirror[J].Spectroscopy and Spectral Analysis, 2016, 36(5): 1554-1559. (in Chinese) [6] 吕金光, 赵百轩, 梁静秋, 等. 像场调制傅里叶变换成像光谱仪的建模与实验研究[J]. 光学学报,2020,40(18):1811002.doi:10.3788/AOS202040.1811002LV J G, ZHAO B X, LIANG J Q,et al. Modeling and experiment of image field modulated Fourier transform imaging spectrometer[J].Acta Optica Sinica, 2020, 40(18): 1811002. (in Chinese)doi:10.3788/AOS202040.1811002 [7] 梁静秋, 梁中翥, 吕金光, 等. 空间调制微型傅里叶变换红外光谱仪研究[J]. 中国光学,2015,8(2):277-298.doi:10.3788/co.20150802.0277LIANG J Q, LIANG ZH ZH, LV J G,et al. Micro spatial modulation Fourier transform infrared spectrometer[J].Chinese Optics, 2015, 8(2): 277-298. (in Chinese)doi:10.3788/co.20150802.0277 [8] GAO J H, LIANG ZH ZH, LIANG J Q,et al. Spectrum reconstruction of a spatially modulated Fourier transform spectrometer based on stepped mirrors[J].Applied Spectroscopy, 2017, 71(6): 1348-1356.doi:10.1177/0003702816669729 [9] LACAN A, BRÉON F M, ROSAK A,et al. A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation[J].Optics Express, 2010, 18(8): 8311-8331.doi:10.1364/OE.18.008311 [10] 朱军, 刘文清, 刘建国, 等. 基于光谱波段优化选择的FTIR测量与分析[J]. 光谱学与光谱分析,2007,27(4):679-682.doi:10.3321/j.issn:1000-0593.2007.04.015ZHU J, LIU W Q, LIU J G,et al. FTIR measurement and analysis based on the selection of optimized spectral band[J].Spectroscopy and Spectral Analysis, 2007, 27(4): 679-682. (in Chinese)doi:10.3321/j.issn:1000-0593.2007.04.015 [11] 戴铁, 郑有飞, 石广玉. 利用红外辐射光谱反演大气CO2浓度的理论研究[J]. 气象与环境科学,2008,31(1):1-5.doi:10.3969/j.issn.1673-7148.2008.01.001DAI T, ZHENG Y F, SHI G Y. Theoretic study on the retrieval of atmospheric CO2concentrations from infrared emitting spectrum[J].Meteorological and Environmental Sciences, 2008, 31(1): 1-5. (in Chinese)doi:10.3969/j.issn.1673-7148.2008.01.001 [12] REN J, LV J G, ZHAO B X,et al. Optical design and investigation of a dual-interference channels and bispectrum static Fourier-transform imaging spectrometer based on stepped micro-mirror[J].IEEE Access, 2021, 9: 81871-81881.doi:10.1109/ACCESS.2021.3086217 [13] ZHAO B X, LV J G, REN J,et al. Data processing and performance evaluation of a tempo-spatially mixed modulation imaging Fourier transform spectrometer based on stepped micro-mirror[J].Optics Express, 2020, 28(5): 6320-6335.doi:10.1364/OE.383401 [14] 赵云, 吕金光, 秦余欣, 等. 微型傅立叶变换光谱仪的优化设计与实验研究[J]. 中国光学,2020,13(2):411-425.doi:10.3788/co.20201302.0411ZHAO Y, LV J G, QIN Y X,et al. Optimization design and experimental study of micro-Fourier transform spectrometer[J].Chinese Optics, 2020, 13(2): 411-425. (in Chinese)doi:10.3788/co.20201302.0411 [15] 安玲坪, 王爽, 张耿, 等. 大孔径静态干涉成像光谱仪径向畸变导致的谱线偏移误差的校正[J]. 中国光学,2021,14(2):382-389.doi:10.37188/CO.2020-0084AN L P, WANG SH, ZHANG G,et al. Corrective method for spectral offset error caused by radial distortion in the large aperture static imaging spectrometer[J].Chinese Optics, 2021, 14(2): 382-389. (in Chinese)doi:10.37188/CO.2020-0084 [16] GRIFFITH D W T, JAMIE I M. Fourier transform infrared spectrometry in atmospheric and trace gas analysis[M]//MEYERS R A. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. New Jersey: John Wiley & Sons, Ltd. , 2006.