Review of ultraviolet photodetectors based on micro/nano-structured wide bandgap semiconductor oxide
-
摘要:
紫外探测技术是继红外探测与金宝搏188软件怎么用 探测技术之后的又一项军民两用探测技术,有广阔的应用前景。真空光电倍增管和Si基光电二极管是常见的商品化紫外探测器,但是真空光电倍增管易受高温和电磁辐射干扰,需要在高压下工作;而Si基光电二极管需要昂贵的滤光片。宽禁带半导体紫外探测器克服了上述两种器件面临的一些问题,成为紫外探测器研究的热点。其中宽禁带氧化物材料,具有易于制备高响应高增益器件、有丰富的微纳结构、易于制备微纳器件的特点,引起了人们的广泛关注。本文对宽禁带半导体氧化物材料的微纳结构器件进行梳理,对近年来的一些相关研究进行了综述。其中涉及的氧化物材料包括ZnO,Ga2O3,SnO2,TiO2等,涉及的器件结构包括金属-半导体-金属型器件,肖特基结型器件,异质结型器件等。
Abstract:Ultraviolet photodetection technology is another dual-use detection technology after infrared detection and laser detection technology, which has broad application prospects. Vacuum photomultiplier tubes and Si-based photodiodes are common commercial UV detectors, but vacuum photomultiplier tubes are susceptible to high temperatures and electromagnetic radiation, and need to work under high pressure while Si-based photodiodes require expensive filters. Wide bandgap semiconductor ultraviolet photodetectors have overcome some of the problems faced by the above two devices, and are becoming the research hotspot. Among them, wide bandgap oxide materials have attracted extensive attention, due to the advantages of easy preparation for high response and high gain devices, and rich micro-structures and nano-structures. In this paper, ultraviolet photodetectors based on micro/nano-structured wide bandgap semiconductor oxide are combed, and some related researches in recent years are reviewed. The oxide materials involved include ZnO, Ga2O3, SnO2 and TiO2, etc. and the device structures involved include metal-semiconductor-metal devices, Schottky junction devices and heterojunction devices, etc.
-
图 2 高质量ZnO微米棒的制备及表面形貌表征。(a) 硅微柱具有疏水侧壁和亲水顶部;(b) 由GaN衬底、前驱体溶液和微柱组成的三明治型组装系统;(c) 连续溶液层的烘干过程和毛细管桥的形成;(d)GaN衬底上的前体ZnO晶体阵列;(e) 以TiO2薄膜涂层为掩模的ZnO阵列前驱体;(f) 在GaN衬底上制备了高质量的ZnO晶体微棒阵列;分别具有不同直径的ZnO微棒阵列的SEM图像(g–h) 2.2 µm和(i–j) 1.3 µm;(k-n) 为通过金宝搏188软件怎么用 扫描共聚焦显微镜获得的与(g–j)对应的ZnO微棒阵列图像(所有比例尺为1 µm)[16]
Figure 2. Fabrication of high-quality ZnO crystal microrod arrays and their morphological characterization. (a) The silicon micropillar template with lyophobic sidewalls and lyophilic tops. (b) The sandwich-type assembling system composed of the GaN substrate, precursor solution, and micropillar template. (c) The dewetting process of the continuous liquid layer and the formation of capillary bridges. (d) Precursor ZnO crystal arrays on the GaN substrate. (e) Precursor ZnO arrays with a coated TiO2 thin film as the mask. (f) As-fabricated high-quality ZnO crystal microrod arrays on the GaN substrate. SEM images of ZnO microrod arrays with different diameters of (g–h) 2.2 µm and (i–j) 1.3 µm, respectively. (k–n) Topographical images of ZnO microrod arrays corresponding to (g–j) obtained by the laser scanning confocal microscopy. (All scale bars, 1 µm)[16].
图 3 (a) 基于PET衬底的柔性ZnO MW/聚苯胺光电探测器的光学图像;(b) 在−1 V偏置和3 mW/cm2、365 nm紫外光照下,柔性ZnO MW/聚苯胺光电探测器在各种弯曲角度下的I-t曲线;(c) 在−1 V偏置和3 mW/cm2、365 nm紫外光照下,柔性ZnO-MW/聚苯胺光电探测器反复弯曲之后的I-t曲线[32]
Figure 3. (a) The optical image of a flexible ZnO MW/polyaniline photodetector on a PET substrate. (b) I-t curve of the flexible ZnO MW/polyaniline photodetector under 365 nm UV switching (3mW/cm2) at −1 V bias with various bending angles. (c) I-t curve of the flexible ZnO MW/polyaniline photodetector under 365 nm UV switching (3 mW/cm2) at −1 V bias after bending cycles[32]
-
[1] 任彬, 江兆潭, 郭晖, 等. 新型Ⅲ族氮化物日盲紫外变像管的研制及导弹逼近告警系统作用距离估算[J]. 兵工学报,2017,38(5):924-931. doi: 10.3969/j.issn.1000-1093.2017.05.012REN B, JIANG ZH T, GUO H, et al. Experiment of new protype group Ⅲ-nitride UV image converter tube and evaluation of detectable distance of missile approach warning system with it[J]. Acta Armamentarii, 2017, 38(5): 924-931. (in Chinese) doi: 10.3969/j.issn.1000-1093.2017.05.012 [2] GUO L, GUO Y N, YANG J K, et al. 275 nm deep ultraviolet AlGaN-based micro-LED arrays for ultraviolet communication[J]. IEEE Photonics Journal, 2022, 14(1): 8202905. [3] PARK Y H, SOKOLIK I N, HALL S R. The impact of smoke on the ultraviolet and visible radiative forcing under different fire regimes[J]. Air,Soil and Water Research, 2018, 11: 1-10. [4] FRĄCZ P. System for monitoring partial discharges occurring in overhead power transmission line insulators based on ultraviolet radiation registration[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2016, 58(7): 360-366. doi: 10.1784/insi.2016.58.7.360 [5] BELZ M, DRESS P, KLEIN K F, et al. Liquid core waveguide with fiber optic coupling for remote pollution monitoring in the deep ultraviolet[J]. Water Science and Technology, 1998, 37(12): 279-284. doi: 10.2166/wst.1998.0552 [6] AI X Y, LI L P, ZHOU X, et al. A monitoring method for sulfate based on ultraviolet absorption spectroscopy dedicated to SO3 monitoring in coal-fired power plants[J]. Chemical Physics Letters, 2021, 780: 138935. doi: 10.1016/j.cplett.2021.138935 [7] CHEN Y R, ZHOU X Y, ZHANG ZH W, et al. Dual-band solar-blind UV photodetectors based on AlGaN/AlN superlattices[J]. Materials Letters, 2021, 291: 129583. doi: 10.1016/j.matlet.2021.129583 [8] KALININA E V, KUDOYAROV M F, NIKITINA I P, et al. Irradiation with argon ions of Cr/4H-SiC photodetectors[J]. Semiconductors, 2022, 56(3): 184-188. doi: 10.1134/S1063782622020087 [9] KUANG D, CHENG J, LI X Y, et al. Dual-ultraviolet wavelength photodetector based on facile method fabrication of ZnO/ZnMgO core/shell nanorod arrays[J]. Journal of Alloys and Compounds, 2021, 860: 157917. doi: 10.1016/j.jallcom.2020.157917 [10] WU C, WU F, MA C, et al. A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors[J]. Materials Today Physics, 2022, 23: 100643. doi: 10.1016/j.mtphys.2022.100643 [11] LIU K W, SAKURAI M, AONO M. ZnO-based ultraviolet photodetectors[J]. Sensors, 2010, 10(9): 8604-8634. doi: 10.3390/s100908604 [12] YANG Q, GUO X, WANG W H, et al. Enhancing sensitivity of a single ZnO micro- nanowire photodetector by piezo-phototronic effect[J]. ACS Nano, 2010, 4(10): 6285-6291. doi: 10.1021/nn1022878 [13] LEE H, JUNG H K, KIM Y E, et al. Facile synthesis of ZnO microrod photodetectors by solid-state reaction[J]. Journal of Alloys and Compounds, 2020, 825: 154110. doi: 10.1016/j.jallcom.2020.154110 [14] LEE H, MUN J H, OH I, et al. Enhanced photodetector performance in gold nanoparticle decorated ZnO microrods[J]. Materials Characterization, 2021, 171: 110813. doi: 10.1016/j.matchar.2020.110813 [15] SUN X Y, AZAD F, WANG SH P, et al. Low-cost flexible ZnO microwires array ultraviolet photodetector embedded in PAVL substrate[J]. Nanoscale Research Letters, 2018, 13(1): 277. doi: 10.1186/s11671-018-2701-4 [16] LI H H, LIU M L, ZHAO J J, et al. Controllable heterogeneous nucleation for patterning high-quality vertical and horizontal ZnO microstructures toward photodetectors[J]. Small, 2020, 16(42): 2004136. doi: 10.1002/smll.202004136 [17] KUMAR A G, LI X J, DU Y, et al. UV-photodetector based on heterostructured ZnO/(Ga, Ag)-co-doped ZnO nanorods by cost-effective two-step process[J]. Applied Surface Science, 2020, 509: 144770. doi: 10.1016/j.apsusc.2019.144770 [18] YOUNG S J, LIU Y H, SHIBLEE M D N I, et al. Flexible ultraviolet photodetectors based on one-dimensional gallium-doped zinc oxide nanostructures[J]. ACS Applied Electronic Materials, 2020, 2(11): 3522-3529. doi: 10.1021/acsaelm.0c00556 [19] CHU Y L, YOUNG S J, JI L W, et al. Fabrication of ultraviolet photodetectors based on fe-doped ZnO nanorod structures[J]. Sensors, 2020, 20(14): 3861. doi: 10.3390/s20143861 [20] MAHMOOD N, KHAN H, TRAN K, et al. Maximum piezoelectricity in a few unit-cell thick planar ZnO – A liquid metal-based synthesis approach[J]. Materials Today, 2021, 44: 69-77. doi: 10.1016/j.mattod.2020.11.016 [21] KRISHNAMURTHI V, AHMED T, MOHIUDDIN M, et al. A visible-blind photodetector and artificial optoelectronic synapse using liquid-metal exfoliated ZnO nanosheets[J]. Advanced Optical Materials, 2021, 9(16): 2100449. doi: 10.1002/adom.202100449 [22] MA H Y, LIU K W, CHENG ZH, et al. Speed enhancement of ultraviolet photodetector base on ZnO quantum dots by oxygen adsorption on surface defects[J]. Journal of Alloys and Compounds, 2021, 868: 159252. doi: 10.1016/j.jallcom.2021.159252 [23] ZHENG ZH Y, LIU K W, CHEN X, et al. High-performance flexible UV photodetector based on self-supporting ZnO nano-networks fabricated by substrate-free chemical vapor deposition[J]. Nanotechnology, 2021, 32(47): 475201. doi: 10.1088/1361-6528/ac1bda [24] YANG F, ZHENG M L, ZHAO L, et al. The high-speed ultraviolet photodetector of ZnO nanowire Schottky barrier based on the triboelectric-nanogenerator-powered surface-ionic-gate[J]. Nano Energy, 2019, 60: 680-688. doi: 10.1016/j.nanoen.2019.04.015 [25] KUMARESAN Y, MIN G B, DAHIYA A S, et al. Kirigami and mogul-patterned ultra-stretchable high-performance ZnO nanowires-based photodetector[J]. Advanced Materials Technologies, 2022, 7(1): 2100804. doi: 10.1002/admt.202100804 [26] DUAN L, HE F N, TIAN Y, et al. Fabrication of self-powered fast-response ultraviolet photodetectors based on graphene/ZnO: Al nanorod-array-film structure with stable schottky barrier[J]. ACS Applied Materials &Interfaces, 2017, 9(9): 8161-8168. [27] ZHU ZH F, WANG SH L, ZHU Y, et al. Fiber-shaped ZnO/graphene schottky photodetector with strain effect[J]. Advanced Materials Interfaces, 2018, 5(11): 1800136. doi: 10.1002/admi.201800136 [28] DHAR S, CHAKRABORTY P, MAJUMDER T, et al. CdS-decorated al-doped ZnO nanorod/polymer schottky junction ultraviolet–visible dual-wavelength photodetector[J]. ACS Applied Nano Materials, 2018, 1(7): 3339-3345. doi: 10.1021/acsanm.8b00551 [29] DHAR S, MAJUMDER T, CHAKRABORTY P, et al. DMSO modified PEDOT: PSS polymer/ZnO nanorods Schottky junction ultraviolet photodetector: photoresponse, external quantum efficiency, detectivity, and responsivity augmentation using N doped graphene quantum dots[J]. Organic Electronics, 2018, 53: 101-110. doi: 10.1016/j.orgel.2017.11.024 [30] DHAR S, MAJUMDER T, CHAKRABORTY P, et al. Enhancement of UV photodetector properties of ZnO nanorods/PEDOT: PSS Schottky junction by NGQD sensitization along with conductivity improvement of PEDOT: PSS by DMSO additive[J]. AIP Conference Proceedings, 2018, 1942(1): 080051. [31] CHEN M X, ZHAO B, HU G F, et al. Piezo-phototronic effect modulated deep UV photodetector based on ZnO-Ga2O3 heterojuction microwire[J]. Advanced Functional Materials, 2018, 28(14): 1706379. doi: 10.1002/adfm.201706379 [32] ZHANG L F, WAN P, XU T, et al. Flexible ultraviolet photodetector based on single ZnO microwire/polyaniline heterojunctions[J]. Optics Express, 2021, 29(12): 19202-19213. doi: 10.1364/OE.430132 [33] COSTAS A, FLORICA C, PREDA N, et al. Radial heterojunction based on single ZnO-CuxO core-shell nanowire for photodetector applications[J]. Scientific Reports, 2019, 9(1): 5553. doi: 10.1038/s41598-019-42060-w [34] BUTANOVS E, VLASSOV S, KUZMIN A, et al. Fast-response single-nanowire photodetector based on ZnO/WS2 core/shell heterostructures[J]. ACS Applied Materials &Interfaces, 2018, 10(16): 13869-13876. [35] LEE D J, RYU S R, KUMAR G M, et al. Piezo-phototronic effect triggered flexible UV photodetectors based on ZnO nanosheets/GaN nanorods arrays[J]. Applied Surface Science, 2021, 558: 149896. doi: 10.1016/j.apsusc.2021.149896 [36] ZHOU H, YANG L, GUI P B, et al. Ga-doped ZnO nanorod scaffold for high-performance, hole-transport-layer-free, self-powered CH3NH3PbI3 perovskite photodetectors[J]. Solar Energy Materials and Solar Cells, 2019, 193: 246-252. doi: 10.1016/j.solmat.2019.01.020 [37] WANG H X, ZHANG P F, ZANG ZH G. High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer[J]. Applied Physics Letters, 2020, 116(16): 162103. doi: 10.1063/5.0005464 [38] YOU D T, XU CH X, ZHANG W, et al. Photovoltaic-pyroelectric effect coupled broadband photodetector in self-powered ZnO/ZnTe core/shell nanorod arrays[J]. Nano Energy, 2019, 62: 310-318. doi: 10.1016/j.nanoen.2019.05.050 [39] WANG H, MA J, CONG L, et al. Piezoelectric effect enhanced flexible UV photodetector based on Ga2O3/ZnO heterojunction[J]. Materials Today Physics, 2021, 20: 100464. doi: 10.1016/j.mtphys.2021.100464 [40] MONDAL A, YADAV M K, SHRINGI S, et al. Extremely low dark current and detection range extension of Ga2O3 UV photodetector using Sn alloyed nanostructures[J]. Nanotechnology, 2020, 31(29): 294002. doi: 10.1088/1361-6528/ab82d4 [41] LU Y C, ZHANG ZH F, YANG X, et al. High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes[J]. Nano Research, 2022, 15(8): 7631-7638. doi: 10.1007/s12274-022-4341-3 [42] WENG W Y, HSUEH T J, CHANG S J, et al. Growth of Ga2O3 nanowires and the fabrication of solar-blind photodetector[J]. IEEE Transactions on Nanotechnology, 2011, 10(5): 1047-1052. doi: 10.1109/TNANO.2011.2104366 [43] ZHANG M M, KANG SH, WANG L, et al. Facile synthesis of β–Ga2O3 nanowires network for solar-blind ultraviolet photodetector[J]. Journal of Physics D:Applied Physics, 2021, 54(17): 175106. doi: 10.1088/1361-6463/abe15a [44] ALHALAILI B, VIDU R, ISLAM M S. The growth of Ga2O3 nanowires on silicon for ultraviolet photodetector[J]. Sensors, 2019, 19(23): 5301. doi: 10.3390/s19235301 [45] ZHANG L Y, XIU X Q, LI Y W, et al. Solar-blind ultraviolet photodetector based on vertically aligned single-crystalline β-Ga2O3 nanowire arrays[J]. Nanophotonics, 2020, 9(15): 4497-4503. doi: 10.1515/nanoph-2020-0295 [46] WU Y T, FENG SH L, ZHANG M M, et al. Self-catalyst β-Ga2O3 semiconductor lateral nanowire networks synthesis on the insulating substrate for deep ultraviolet photodetectors[J]. RSC Advances, 2021, 11(45): 28326-28331. doi: 10.1039/D1RA04663B [47] XIE CH, LU X T, MA M R, et al. Catalyst-free vapor-solid deposition growth of β-Ga2O3 nanowires for DUV photodetector and image sensor application[J]. Advanced Optical Materials, 2019, 7(24): 1901257. doi: 10.1002/adom.201901257 [48] WANG SH L, SUN H L, WANG ZH, et al. In situ synthesis of monoclinic β-Ga2O3 nanowires on flexible substrate and solar-blind photodetector[J]. Journal of Alloys and Compounds, 2019, 787: 133-139. doi: 10.1016/j.jallcom.2019.02.031 [49] WU C, HE C, GUO D, et al. Vertical α/β-Ga2O3 phase junction nanorods array with graphene-silver nanowire hybrid conductive electrode for high-performance self-powered solar-blind photodetectors[J]. Materials Today Physics, 2020, 12: 100193. doi: 10.1016/j.mtphys.2020.100193 [50] JUBU P R, YAM F K. Development and characterization of MSM UV photodetector based on gallium oxide nanostructures[J]. Sensors and Actuators A:Physical, 2020, 312: 112141. doi: 10.1016/j.sna.2020.112141 [51] ZHENG ZH Y, LIU K W, CHENG ZH, et al. Single β-Ga2O3 microbelt solar-blind photodetector with high specific detectivity, high rejection ratio and fast speed[J]. Journal of Physics D:Applied Physics, 2022, 55(36): 365107. doi: 10.1088/1361-6463/ac77c9 [52] WEI J Y, SHEN L P, ZHENG ZH CH, et al. The suppression of dark current for achieving high-performance Ga2O3 nanorod array ultraviolet photodetector[J]. Ceramics International, 2022, 48(9): 12112-12117. doi: 10.1016/j.ceramint.2022.01.071 [53] MITRA S, PAK Y, XIN B, et al. Solar-blind self-powered photodetector using solution-processed amorphous core-shell gallium oxide nanoparticles[J]. ACS Applied Materials &Interfaces, 2019, 11(42): 38921-38928. [54] CHEN X, LIU K W, ZHANG ZH ZH, et al. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film schottky junction[J]. ACS Applied Materials &Interfaces, 2016, 8(6): 4185-4191. [55] FAN M M, XU K L, CAO L, et al. Fast-speed self-powered PEDOT: PSS/α-Ga2O3 nanorod array/FTO photodetector with solar-blind UV/visible dual-band photodetection[J]. Chinese Physics B, 2022, 31(4): 048501. doi: 10.1088/1674-1056/ac3814 [56] FAN M M, XU K L, LI X Y, et al. Self-powered solar-blind UV/visible dual-band photodetection based on a solid-state PEDOT: PSS/α-Ga2O3 nanorod array/FTO photodetector[J]. Journal of Materials Chemistry C, 2021, 9(46): 16459-16467. doi: 10.1039/D1TC04091J [57] SHIN G, KIM H Y, KIM J. Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction[J]. Korean Journal of Chemical Engineering, 2018, 35(2): 574-578. doi: 10.1007/s11814-017-0279-7 [58] CHEN Y CH, LU Y J, LIN CH N, et al. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging[J]. Journal of Materials Chemistry C, 2018, 6(21): 5727-5732. doi: 10.1039/C8TC01122B [59] HE T, ZHANG X D, DING X Y, et al. Broadband ultraviolet photodetector based on vertical Ga2O3/GaN nanowire array with high responsivity[J]. Advanced Optical Materials, 2019, 7(7): 1801563. doi: 10.1002/adom.201801563 [60] FAN M M, CAO L, XU K L, et al. Mixed-phase β-Ga2O3 and SnO2 metal-semiconductor-metal photodetectors with extended detection range from 293 nm to 330 nm[J]. Journal of Alloys and Compounds, 2021, 853: 157080. doi: 10.1016/j.jallcom.2020.157080 [61] HE CH R, GUO D Y, CHEN K, et al. α-Ga2O3 nanorod array–Cu2O microsphere p–n junctions for self-powered spectrum-distinguishable photodetectors[J]. ACS Applied Nano Materials, 2019, 2(7): 4095-4103. doi: 10.1021/acsanm.9b00527 [62] YANG Y, LIU W M, HUANG T T, et al. Low deposition temperature amorphous ALD-Ga2O3 thin films and decoration with MoS2 multilayers toward flexible solar-blind photodetectors[J]. ACS Applied Materials &Interfaces, 2021, 13(35): 41802-41809. [63] GONG H H, WANG ZH P, YU X X, et al. Field-plated NiO/Ga2O3 p-n heterojunction power diodes with high-temperature thermal stability and near unity ideality factors[J]. IEEE Journal of the Electron Devices Society, 2021, 9: 1166-1171. doi: 10.1109/JEDS.2021.3130305 [64] LI SH, GUO D Y, LI P G, et al. Ultrasensitive, superhigh signal-to-noise ratio, self-powered solar-blind photodetector based on n-Ga2O3/p-CuSCN core-shell microwire heterojunction[J]. ACS Applied Materials &Interfaces, 2019, 11(38): 35105-35114. [65] LI SH, ZHI Y S, LU CH, et al. Broadband ultraviolet self-powered photodetector constructed on exfoliated β-Ga2O3/CuI core-shell microwire heterojunction with superior reliability[J]. Journal of Physical Chemistry Letters, 2021, 12(1): 447-453. doi: 10.1021/acs.jpclett.0c03382 [66] BAE H, CHARNAS A, SUN X, et al. Solar-blind UV photodetector based on atomic layer-deposited Cu2O and nanomembrane β-Ga2O3 pn oxide heterojunction[J]. ACS Omega, 2019, 4(24): 20756-20761. doi: 10.1021/acsomega.9b03149 [67] CHEN K, WANG SH L, HE CH R, et al. Photoelectrochemical self-powered solar-blind photodetectors based on Ga2O3 nanorod array/electrolyte solid/liquid heterojunctions with a large separation interface of photogenerated carriers[J]. ACS Applied Nano Materials, 2019, 2(10): 6169-6177. doi: 10.1021/acsanm.9b00992 [68] LIU SH, JIAO SH J, ZHANG J H, et al. High-detectivity and sensitive UVA photodetector of polycrystalline CH3NH3PbCl3 improved by α-Ga2O3 nanorod array[J]. Applied Surface Science, 2022, 571: 151291. doi: 10.1016/j.apsusc.2021.151291 [69] ZHANG Y, XU W X, XU X J, et al. Self-powered dual-color UV-green photodetectors based on SnO2 millimeter wire and microwires/CsPbBr3 particle heterojunctions[J]. The Journal of Physical Chemistry Letters, 2019, 10(4): 836-841. doi: 10.1021/acs.jpclett.9b00154 [70] JIANG J, HECK F, HOFMANN D M, et al. Synthesis of SnO2 nanowires using SnI2 as precursor and their application as high-performance self-powered ultraviolet photodetectors[J]. Physica Status Solidi (b) , 2018, 255(3): 1700426. doi: 10.1002/pssb.201700426 [71] MARIMUTHU G, SARAVANAKUMAR K, JEYADHEEPAN K, et al. Influence of twin boundaries on the photocurrent decay of nanobranch and dense-forest structured SnO2 UV photodetectors[J]. Superlattices and Microstructures, 2019, 128: 181-198. doi: 10.1016/j.spmi.2019.01.032 [72] LI Y H, HUANG W X, LIU H, et al. UV photodetector based on polycrystalline SnO2 nanotubes by electrospinning with enhanced performance[J]. Journal of Nanoparticle Research, 2018, 20(12): 334. doi: 10.1007/s11051-018-4440-y [73] CHETRI P, DHAR J C. Au/GLAD-SnO2 nanowire array-based fast response Schottky UV detector[J]. Applied Physics A, 2019, 125(5): 286. doi: 10.1007/s00339-019-2590-0 [74] CHETRI P, DHAR J C. Improved photodetector performance of SnO2 nanowire by optimized air annealing[J]. Semiconductor Science and Technology, 2020, 35(4): 045014. doi: 10.1088/1361-6641/ab7434 [75] OZEL K, YILDIZ A. A self‐powered ultraviolet photodetector with ultrahigh photoresponsivity (208 mA·W−1) based on SnO2 nanostructures/Si heterojunctions[J]. Physica Status Solidi (RRL) , 2021, 15(6): 2100085. doi: 10.1002/pssr.202100085 [76] LOU ZH, YANG X L, CHEN H R, et al. Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays[J]. Journal of Semiconductors, 2018, 39(2): 024002. doi: 10.1088/1674-4926/39/2/024002 [77] LONG ZH H, XU X J, YANG W, et al. Cross-bar SnO2-NiO nanofiber-array-based transparent photodetectors with high detectivity[J]. Advanced Electronic Materials, 2020, 6(1): 1901048. doi: 10.1002/aelm.201901048 [78] HAN J K, SONG D S, LIM Y R, et al. Nonlinear photoelectric properties by strained MoS2 and SnO2 core-shell nanotubes for flexible visible light photodetectors[J]. Advanced Materials Technologies, 2021, 6(5): 2001105. doi: 10.1002/admt.202001105 [79] LI L D, LOU ZH, CHEN H R, et al. Stretchable SnO2-CdS interlaced-nanowire film ultraviolet photodetectors[J]. Science China Materials, 2019, 62(8): 1139-1150. doi: 10.1007/s40843-019-9416-7 [80] CAI J, XU X J, SU L X, et al. Self-powered n-SnO2/p-CuZnS core-shell microwire UV photodetector with optimized performance[J]. Advanced Optical Materials, 2018, 6(15): 1800213. doi: 10.1002/adom.201800213 [81] GHOSH C, DWIVEDI S M M D, GHOSH A, et al. A novel Ag nanoparticles/TiO2 nanowires-based photodetector and glucose concentration detection[J]. Applied Physics A, 2019, 125(12): 810. doi: 10.1007/s00339-019-3108-5 [82] JOSHNA P, HAZRA A, CHAPPANDA K N, et al. Fast response of UV photodetector based on Ag nanoparticles embedded uniform TiO2 nanotubes array[J]. Semiconductor Science and Technology, 2020, 35(1): 015001. doi: 10.1088/1361-6641/ab52f1 [83] ZHANG M, TUOKEDAERHAN K, ZHANG H Y, et al. Ultraviolet photodetector based on Au doped TiO2 nanowires array with low dark current[J]. Optoelectronics Letters, 2019, 15(2): 81-84. doi: 10.1007/s11801-019-8106-5 [84] GULLER O, PEKSU E, KARAAGAC H. Synthesis of TiO2 nanorods for schottky-type UV-photodetectors and third-generation solar cells[J]. Physica Status Solidi (a) , 2018, 215(4): 1700404. doi: 10.1002/pssa.201700404 [85] DONG Y N, ZHENG W J, YAN X M, et al. SnO2 nanorods arrays functionalized TiO2 nanoparticles based UV photodetector with high and fast response[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(14): 13099-13107. doi: 10.1007/s10854-019-01673-7 [86] HSU C L, WU H Y, FANG C C, et al. Solution-processed UV and visible photodetectors based on Y-doped ZnO nanowires with TiO2 nanosheets and Au nanoparticles[J]. ACS Applied Energy Materials, 2018, 1(5): 2087-2095. doi: 10.1021/acsaem.8b00180 [87] JUBU P R, CHAHROUR K M, YAM F K, et al. Titanium oxide nanotube film decorated with β-Ga2O3 nanoparticles for enhanced water splitting properties[J]. Solar Energy, 2022, 235: 152-162. doi: 10.1016/j.solener.2022.02.033 [88] CAO R, XU J P, SHI SH B, et al. High-performance self-powered ultraviolet photodetectors based on mixed-dimensional heterostructure arrays formed from NiO nanosheets and TiO2 nanorods[J]. Journal of Materials Chemistry C, 2020, 8(28): 9646-9654. doi: 10.1039/D0TC01956A [89] NI SH M, GUO F Y, WANG D B, et al. Effect of MgO surface modification on the TiO2 nanowires electrode for self-powered UV photodetectors[J]. ACS Sustainable Chemistry &Engineering, 2018, 6(6): 7265-7272. [90] BASHIRI R, IRFAN M S, MOHAMED N M, et al. Hierarchically SrTiO3@TiO2@Fe2O3 nanorod heterostructures for enhanced photoelectrochemical water splitting[J]. International Journal of Hydrogen Energy, 2021, 46(48): 24607-24619. doi: 10.1016/j.ijhydene.2020.02.106 [91] LING C C, GUO T CH, ZHAO L, et al. TiO2@TiO2-xHx core-shell nanoparticle film/Si heterojunction for ultrahigh detectivity and sensitivity broadband photodetector[J]. Nanotechnology, 2019, 30(41): 415203. doi: 10.1088/1361-6528/ab2e32 [92] HO Y R, CHANG Y H, LIN C H, et al. Al2O3-passivated TiO2 nanorods for solid–liquid heterojunction ultraviolet photodetectors[J]. Journal of Materials Science, 2021, 56(10): 6052-6063. doi: 10.1007/s10853-020-05669-1 [93] MAURYA M R, TOUTAM V, BATHULA S, et al. Wide spectral photoresponse of template assisted out of plane grown ZnO/NiO composite nanowire photodetector[J]. Nanotechnology, 2020, 31(2): 025705. doi: 10.1088/1361-6528/ab474e [94] YU N S, LI H O, WU Y F. A high-sensitivity, fast-response, rapid-recovery UV photodetector based on p-GaN/NiO nanostructures/n-GaN sandwich structure[J]. Solid State Sciences, 2020, 104: 106206. doi: 10.1016/j.solidstatesciences.2020.106206 [95] YU N S, LI H O, QI Y. NiO nanosheet/GaN heterojunction self-powered ultraviolet photodetector grown by a solution method[J]. Optical Materials Express, 2019, 9(1): 26-34. doi: 10.1364/OME.9.000026 [96] REDDY K C S, SAHATIYA P, SANTOS-SAUCEDA I, et al. One-step fabrication of 1D p-NiO nanowire/n-Si heterojunction: development of self-powered ultraviolet photodetector[J]. Applied Surface Science, 2020, 513: 145804. doi: 10.1016/j.apsusc.2020.145804 [97] JAYALAKSHMI G, SARAVANAN K, NAVAS J, et al. Fabrication of p-NiO nanoflakes/n-Si(100) heterojunction architecture for high sensitive photodetectors[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(7): 6811-6819. doi: 10.1007/s10854-019-00993-y [98] SABZEHPARVAR M, KIANI F, TABRIZI N S. Mesoporous-assembled TiO2-NiO-Ag nanocomposites with p-n/Schottky heterojunctions for enhanced photocatalytic performance[J]. Journal of Alloys and Compounds, 2021, 876: 160133. doi: 10.1016/j.jallcom.2021.160133 [99] ZHANG Y F, JI T, ZHU J Q, et al. A high performance self-powered heterojunction photodetector based on NiO nanosheets on an n-Si (1 0 0) modified substrate[J]. Materials Letters, 2021, 285: 128995. doi: 10.1016/j.matlet.2020.128995 [100] YE T, YU L M, LI S L, et al. High-performance wide-spectrum photoresponse photodetector based on 3D porous In2O3 microcubes[J]. Materials Letters, 2022, 314: 131917. doi: 10.1016/j.matlet.2022.131917 [101] RAN W H, LOU ZH, SHEN G ZH. Ultra-high-sensitivity photodetector from ultraviolet to visible based on Ga-doped In2O3 nanowire phototransistor with top-gate structure[C]. Proceedings of the 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), IEEE, 2021. [102] TIEN L C, YANG F M, HUANG S C, et al. Single Zn2GeO4 nanowire high-performance broadband photodetector[J]. Journal of Applied Physics, 2018, 124(17): 174503. doi: 10.1063/1.5054915 [103] CHEN SH, LOU ZH, CHEN D, et al. Printable Zn2GeO4 microwires based flexible photodetectors with tunable photoresponses[J]. Advanced Materials Technologies, 2018, 3(5): 1800050. doi: 10.1002/admt.201800050 [104] HU J N, LIU K, MA T, et al. Zn2GeO4 nanowires synthesized by dual laser-hydrothermal method for deep-ultraviolet photodetectors[J]. Optics &Laser Technology, 2021, 140: 106946.