留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光致热弹光谱气体检测技术研究进展

娄存广 代佳亮 李瑞凯 刘秀玲 姚建铨

娄存广, 代佳亮, 李瑞凯, 刘秀玲, 姚建铨. 光致热弹光谱气体检测技术研究进展[J]. , 2023, 16(2): 229-242. doi: 10.37188/CO.2022-0137
引用本文: 娄存广, 代佳亮, 李瑞凯, 刘秀玲, 姚建铨. 光致热弹光谱气体检测技术研究进展[J]. , 2023, 16(2): 229-242. doi: 10.37188/CO.2022-0137
LOU Cun-guang, DAI Jia-liang, LI Rui-kai, LIU Xiu-ling, YAO Jian-quan. Research progress of gas detection based on laser-induced thermoelastic spectroscopy[J]. Chinese Optics, 2023, 16(2): 229-242. doi: 10.37188/CO.2022-0137
Citation: LOU Cun-guang, DAI Jia-liang, LI Rui-kai, LIU Xiu-ling, YAO Jian-quan. Research progress of gas detection based on laser-induced thermoelastic spectroscopy[J]. Chinese Optics, 2023, 16(2): 229-242. doi: 10.37188/CO.2022-0137

光致热弹光谱气体检测技术研究进展

基金项目: 国家自然科学基金区域创新发展联合基金(No. U20A20224);河北省自然科学基金(No. F2021201005);河北省科技计划项目(No. 22321701D);河北省高等学校科学技术研究项目(No. ZD2022072)
详细信息
    作者简介:

    娄存广(1985—),男,山东聊城人,博士,副教授,硕士生导师,2012年于华南师范大学获得博士学位,2012—2015年任华南师范大学生物光子学学院讲师,2015年9月至今任河北大学电子信息工程学院副教授,主要研究方向为光学气体传感器和太赫兹光谱学。E-mail:loucunguang@163.com

    李瑞凯(1991—),男,河北邢台人,硕士,工程师。2017年于河北大学获得硕士学位,现为河北大学附属医院工程师。主要研究方向为电路与系统,光电检测技术与仪器。E-mail:liruikai_hbu@163.com

    姚建铨(1939—),男,江苏无锡人,教授,博士生导师,中国科学院院士, 与光电子技术研究所所长, 与非线性光学专家,现任天津大学 与光电子研究所、精密仪器与光电子工程学院教授,主要研究方向为 、非线性光学和太赫兹技术。E-mail:jqyao@tju.edu.cn

  • 中图分类号: O433.5+1;O439

Research progress of gas detection based on laser-induced thermoelastic spectroscopy

Funds: Supported by Regional Innovation and Development Joint Fund of National Natural Science Foundation of China (No. U20A20224); Natural Science Foundation of Hebei Province (No. F2021201005); Science and technology plan project of Hebei Province (No. 22321701D); Science and Technology Research Project of Higher Education Institutions of Hebei Province (No. ZD2022072)
More Information
  • 摘要:

    光致热弹光谱是一种基于石英音叉热弹效应的新型气体检测技术,具有成本低、体积小、灵敏度高及光谱响应范围宽等优点,是目前一种重要的痕量气体检测方法。本文首先分析了基于光致热弹光谱的气体浓度测量原理,其次,从提高检测系统灵敏度的各种技术方法角度出发,介绍了近年来开发的提高石英音叉热弹光谱系统检测灵敏度的技术方法,从信号幅值、信噪比、最小检出限和归一化噪声等效吸收系数等方面,对系统的性能改进提升效果进行评估。最后,简要评述了光致热弹光谱在现场气体检测中的应用研究进展,对进一步提高检测系统灵敏度的方法进行了总结与展望。

     

  • 图 1  石英音叉实物图及其谐振特性。(a) QTF照片; (b) QTF的振动特性曲线; (c) QTF的基本振动模式仿真

    Figure 1.  Photographic image and resonant characteristics of QTF. (a) Photograph of QTF; (b) vibration characteristic curve of QTF; (c) simulation analysis on fundamental vibration mode of QTF

    图 2  何应等人提出的LITES系统的实验装置及实验结果[25]。(a) 实验装置示意图; (b) TDLAS和LITES系统的2f信号和噪声

    Figure 2.  Experimental setup and experimental results of the LITES system proposed by He Ying et al.[25] (a) Schematic diagram of the experimental setup; (b) 2f signal and noise of TDLAS and LITES system. Reprinted with permission from Ref. [25] © The Optical Society.

    图 3  张秦端等人提出的LITES系统的实验装置及实验结果[29]。(a) LITES系统示意图; (b) 应用QTF自差技术前后的信号

    Figure 3.  Experimental setup and results of the LITES system proposed by Zhang Qinduan et al.[29] (a) Schematic diagram of the LITES system; (b) signals before and after applying QTF-self-difference technique

    图 4  卫婷婷等人提出的LITES系统的实验装置及实验结果[31]。(a) 实验装置示意图; (b) QTF在700 Torr和8 Torr 下测量的2f信号

    Figure 4.  Experimental setup and experimental results of the LITES system proposed by Wei Tingting et al..[31] (a) Schematic diagram of the experimental setup; (b) 2f signals measured by QTF at 700 Torr and 8 Torr. Reprinted with permission from Ref. [31] © The Optical Society.

    图 5  马欲飞等人提出的多音叉LITES系统的实验装置及实验结果[32]。(a) 基于两个腐蚀QTF的LITES示意图;(b) 测量的2f信号

    Figure 5.  Experimental setup and experimental results of multi-QTF LITES system proposed by Ma Yufei et al..[32] (a) Schematic diagram of LITES based on two corroded QTFs; (b) the measured 2f signal amplitude. Reprinted with permission from Ref. [32] © Elsevier.

    图 6  马欲飞等人提出的QEPAS-LITES系统实验装置及实验结果[34]。(a) 实验装置示意图;(b) 在25 °C和大气压下测量的2f信号;(c) T2=67.5 °C时测得的2f信号;(d) P2=500 Torr时测得的2f信号

    Figure 6.  Schematic diagram of experimental setup and experimental results of QEPAS-LITES system proposed by Ma Yufei et al..[34] (a) Schematic diagram of the experimental setup; (b) 2f signals measured at 25 °C and atmospheric pressure; (c) 2f signals measured at T2=67.5 °C; (d) 2f signals measured at P2=500 Torr. Reprinted with permission from Ref. [34] © Elsevier.

    图 7  乔顺达等人提出的S-QEDS系统实验装置及实验结果[35]。(a) 实验装置示意图;(b) S-QEDS、LITES和QEPAS系统的2f信号

    Figure 7.  Schematic diagram of the experimental device and experimental results of the S-QEDS system proposed by Qiao Shunda et al..[35] (a) Schematic diagram of the experimental setup; (b) 2f signal of the S-QEDS, LITES and QEPAS system. Reprinted with permission from Ref. [35] © The Optical Society.

    图 8  基于定制QTF的LITES系统示意图及实验结果。(a) 定制QTF的示意图[36];(b) LITES传感器示意图[37];(c) LITES 传感器系统的2f信号[37]

    Figure 8.  Schematic diagram of LITES system and experimental results based on customized QTF. (a) Schematic diagram of custom QTF[36]; (b) schematic diagram of the LITES sensor[37]; (c) 2f signal of LITES sensor systems[37]. Reprinted with permission from Ref. [37] © The Optical Society.

    图 9  涂有PDMS和rGO涂层的QTF和实验结果。(a) 具有PDMS和rGO涂层的QTF示意图[43]; (b) PDMS和rGO涂层QTF的SEM图像[41]; (c) 不同QTF检测到的300×10−6 NH3的2f信号[41]; (d) 图(c)中2f信号的幅值和SNR[41]

    Figure 9.  Schematic diagram and SEM of QTF with PDMS and rGO coating and corresponding experimental results. (a) Schematic diagram of QTF with PDMS and rGO coating[43]; Reprinted with permission from Ref. [43] © The Optical Society. (b) SEM image of QTF with PDMS and rGO coating[41]; (c) the 2f signal of 300×10−6 NH3 detected by different QTFs[41]; (d) the amplitude and SNR of 2f signals in figure (c)[41]

    图 10  CH4泄漏现场测量照片及CH4浓度随时间变化曲线[45]。(a-c)吉林大学校园远程燃气泄漏测量照片; (d) 作为测量时间函数的测量CH4浓度曲线

    Figure 10.  Photo of on-site measurement of CH4 leakage and curve of CH4 concentration varying with time[45]. (a-c) Photographs of the long-distance gas leakage measurement on Jilin University campus; (d) measured CH4 concentration curve as a function of measurement time

    Baidu
  • [1] 李振基, 陈小麟, 郑海雷. 生态学[M]. 4版. 北京: 科学出版社, 2014.

    LI ZH J, CHEN X L, ZHENG H L. Ecological[M]. 4th ed. Beijing: Science Press, 2014. (in Chinese)
    [2] DUAN L, CHEN X, MA X X, et al. Atmospheric S and N deposition relates to increasing riverine transport of S and N in southwest China: Implications for soil acidification[J]. Environmental Pollution, 2016, 218: 1191-1199. doi: 10.1016/j.envpol.2016.08.075
    [3] 陆龙骅. 2020年: 首个北极臭氧洞[J]. 极地研究,2020,32(3):415-416.

    LU L H. The first Arctic ozone hole in 2020[J]. Chinese Journal of Polar Research, 2020, 32(3): 415-416. (in Chinese)
    [4] NURJULIANA M, CHE MAN Y B, MAT HASHIM D, et al. Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer[J]. Meat Science, 2011, 88(4): 638-644. doi: 10.1016/j.meatsci.2011.02.022
    [5] MANOILOV V V, NOVIKOV L V, ZARUTSKII I V, et al. Methods for processing mass spectrometry signals from exhaled gases for medical diagnosis[J]. Biomedical Engineering, 2020, 53(5): 355-359. doi: 10.1007/s10527-020-09942-0
    [6] 袁志国, 马修真, 刘晓楠, 等. 利用可调谐 吸收光谱技术的柴油机排放温度测试研究[J]. 中国光学,2020,13(2):281-289. doi: 10.3788/co.20201302.0281

    YUAN ZH G, MA X ZH, LIU X N, et al. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J]. Chinese Optics, 2020, 13(2): 281-289. (in Chinese) doi: 10.3788/co.20201302.0281
    [7] 钟笠, 宋迪, 焦月, 等. 具有复杂光谱特征的丙烯气体的TDLAS检测技术研究[J]. 中国光学,2020,13(5):1044-1054. doi: 10.37188/CO.2019-0203

    ZHONG L, SONG D, JIAO Y, et al. TDLAS detection of propylene with complex spectral features[J]. Chinese Optics, 2020, 13(5): 1044-1054. (in Chinese) doi: 10.37188/CO.2019-0203
    [8] 刘文清, 崔志成, 刘建国, 等. 大气痕量气体测量的光谱学和化学技术[J]. 量子电子学报,2004,21(2):202-210. doi: 10.3969/j.issn.1007-5461.2004.02.011

    LIU W Q, CUI ZH CH, LIU J G, et al. Measurement of atmospheric trace gases by spectroscopic and chemical techniques[J]. Chinese Journal of Quantum Electronics, 2004, 21(2): 202-210. (in Chinese) doi: 10.3969/j.issn.1007-5461.2004.02.011
    [9] 马欲飞. 基于石英增强光声光谱的气体传感技术研究进展[J]. 物理学报,2021,70(16):160702. doi: 10.7498/aps.70.20210685

    MA Y F. Research progress of quartz-enhanced photoacoustic spectroscopy based gas sensing[J]. Acta Physica Sinica, 2021, 70(16): 160702. (in Chinese) doi: 10.7498/aps.70.20210685
    [10] BELL A G. On the production and reproduction of sound by light[J]. American Journal of Science, 1880, s3-20(118): 305-324. doi: 10.2475/ajs.s3-20.118.305
    [11] KOSTEREV A A, BAKHIRKIN Y A, CURL R F, et al. Quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2002, 27(21): 1902-1904. doi: 10.1364/OL.27.001902
    [12] ROUSSEAU R, LOGHMARI Z, BAHRIZ M, et al. Off-beam QEPAS sensor using an 11-μm DFB-QCL with an optimized acoustic resonator[J]. Optics Express, 2019, 27(5): 7435-7446. doi: 10.1364/OE.27.007435
    [13] MA Y F, YU X, YU G, et al. Multi-quartz-enhanced photoacoustic spectroscopy[J]. Applied Physics Letters, 2015, 107(2): 021106. doi: 10.1063/1.4927057
    [14] YI H M, MAAMARY R, GAO X M, et al. Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy[J]. Applied Physics Letters, 2015, 106(10): 101109. doi: 10.1063/1.4914896
    [15] MA Y F, HE Y, YU X, et al. HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork[J]. Sensors &Actuators B:Chemical, 2016, 233: 388-393.
    [16] MA Y F, HE Y, TONG Y, et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection[J]. Optics Express, 2018, 26(24): 32103-32110. doi: 10.1364/OE.26.032103
    [17] MA Y F. Recent advances in QEPAS and QEPTS based trace gas sensing: A Review[J]. Frontiers in Physics, 2020, 8: 268. doi: 10.3389/fphy.2020.00268
    [18] PETRA N, ZWECK J, KOSTEREV A A, et al. Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor[J]. Applied Physics B, 2009, 94(4): 673-680. doi: 10.1007/s00340-009-3379-1
    [19] 黄强先, 王毛翠, 赵剑, 等. 石英音叉扫描探针显微镜[J]. 机械工程学报,2012,48(4):1-5. doi: 10.3901/JME.2012.04.001

    HUANG Q X, WNAG M C, ZHAO J, et al. Scanning probe microscopy using quartz tuning fork[J]. Journal of Mechanical Engineering, 2012, 48(4): 1-5. (in Chinese) doi: 10.3901/JME.2012.04.001
    [20] 姜萌, 冯巧玲, 梁同利, 等. 基于增强石英音叉的光声探测器研究进展[J]. 与光电子学进展,2015,52(9):090002.

    JIANG M, FENG Q L, LIANG T L, et al. Recent advances in quartz-enhanced photoacoustic spectrophone[J]. Laser &Optoelectronics Progress, 2015, 52(9): 090002. (in Chinese)
    [21] 李言武, 王强, 李劲松. 一种基于石英音叉的增强型光电探测器[J]. 工业控制计算机,2022,35(3):89-90. doi: 10.3969/j.issn.1001-182X.2022.03.033

    LI Y W, WANG Q, LI J S. An enhanced photodetector based on QTF[J]. Industrial Control Computer, 2022, 35(3): 89-90. (in Chinese) doi: 10.3969/j.issn.1001-182X.2022.03.033
    [22] POHLKÖTTER A, WILLER U, BAUER C, et al. Resonant tuning fork detector for electromagnetic radiation[J]. Applied Optics, 2009, 48(4): B119-B125. doi: 10.1364/AO.48.00B119
    [23] WILLER U, ROMANO C, SCHADE W. Compact gas sensing system based on mid-infrared LED and resonant detection with quartz tuning fork[C]. 2009 Conference on Lasers and Electro-Optics and and 2009 Conference on Quantum electronics and Laser Science Conference, IEEE, 2009.
    [24] DING J Y, HE T B, ZHOU SH, et al. Quartz tuning fork-based photodetector for mid-infrared laser spectroscopy[J]. Applied Physics B, 2018, 124(5): 78. doi: 10.1007/s00340-018-6950-9
    [25] HE Y, MA Y F, TONG Y, et al. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell[J]. Optics Letters, 2019, 44(8): 1904-1907. doi: 10.1364/OL.44.001904
    [26] ZHENG K Y, ZHENG CH T, HU L E, et al. Light-induced off-axis cavity-enhanced thermoelastic spectroscopy in the near-infrared for trace gas sensing[J]. Optics Express, 2021, 29(15): 23213-23224. doi: 10.1364/OE.430745
    [27] LIU X N, MA Y F. Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell [Invited][J]. Chinese Optics Letters, 2022, 20(3): 031201. doi: 10.3788/COL202220.031201
    [28] LIU X N, QIAO SH D, MA Y F. Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 µm diode laser and adaptive Savitzky-Golay filtering[J]. Optics Express, 2022, 30(2): 1304-1313. doi: 10.1364/OE.446294
    [29] ZHANG Q D, CHANG J, CONG ZH H, et al. Quartz tuning fork enhanced photothermal spectroscopy gas detection system with a novel QTF-self-difference technique[J]. Sensors and Actuators A:Physical, 2019, 299: 111629. doi: 10.1016/j.sna.2019.111629
    [30] RUSSO S D, ZIFARELLI A, PATIMISCO P, et al. Light-induced thermo-elastic effect in quartz tuning forks exploited as a photodetector in gas absorption spectroscopy[J]. Optics Express, 2020, 28(13): 19074-19084. doi: 10.1364/OE.393292
    [31] WEI T T, WU H P, DONG L, et al. Palm-sized methane TDLAS sensor based on a mini-multi-pass cell and a quartz tuning fork as a thermal detector[J]. Optics Express, 2021, 29(8): 12357-12364. doi: 10.1364/OE.423217
    [32] MA Y F, HU Y Q, QIAO SH D, et al. Trace gas sensing based on multi-quartz-enhanced photothermal spectroscopy[J]. Photoacoustics, 2020, 20: 100206. doi: 10.1016/j.pacs.2020.100206
    [33] HU Y Q, QIAO SH D, HE Y, et al. Quartz-enhanced photoacoustic-photothermal spectroscopy for trace gas sensing[J]. Optics Express, 2021, 29(4): 5121-5127. doi: 10.1364/OE.418256
    [34] MA Y F, HU Y Q, QIAO SH D, et al. Quartz tuning forks resonance frequency matching for laser spectroscopy sensing[J]. Photoacoustics, 2022, 25: 100329. doi: 10.1016/j.pacs.2022.100329
    [35] QIAO SH D, HE Y, MA Y F. Trace gas sensing based on single-quartz-enhanced photoacoustic–photothermal dual spectroscopy[J]. Optics Letters, 2021, 46(10): 2449-2452. doi: 10.1364/OL.423801
    [36] MA Y F, HE Y, PATIMISCO P, et al. Ultra-high sensitive trace gas detection based on light-induced thermoelastic spectroscopy and a custom quartz tuning fork[J]. Applied Physics Letters, 2020, 116(1): 011103. doi: 10.1063/1.5129014
    [37] QIAO SH D, MA Y F, HE Y, et al. Ppt level carbon monoxide detection based on light-induced thermoelastic spectroscopy exploring custom quartz tuning forks and a mid-infrared QCL[J]. Optics Express, 2021, 29(16): 25100-25108. doi: 10.1364/OE.434128
    [38] LOU C G, YANG X, LI X T, et al. Graphene-enhanced quartz tuning fork for laser-induced thermoelastic spectroscopy[J]. IEEE Sensors Journal, 2021, 21(8): 9819-9824. doi: 10.1109/JSEN.2021.3059905
    [39] LOU C G, LI X T, CHEN H J, et al. Polymer-coated quartz tuning fork for enhancing the sensitivity of laser-induced thermoelastic spectroscopy[J]. Optics Express, 2021, 29(8): 12195-12205. doi: 10.1364/OE.421356
    [40] ZHOU SH, XU L G, CHEN K, et al. Absorption spectroscopy gas sensor using a low-cost quartz crystal tuning fork with an ultrathin iron doped cobaltous oxide coating[J]. Sensors and Actuators B:Chemical, 2021, 326: 128951. doi: 10.1016/j.snb.2020.128951
    [41] LOU C G, WANG Y, ZHANG Y, et al. Reduced graphene oxide/polydimethylsiloxane as an over-coating layer on quartz tuning fork for sensitive light-induced thermoelastic spectroscopy[J]. IEEE Sensors Journal, 2022, 22(11): 10459-10464. doi: 10.1109/JSEN.2022.3171607
    [42] WANG Y, CHENG T, LOU C G, et al. . Carbon-based light-induced thermoelastic spectroscopy for ammonia gas sensing[J]. Microwave and Optical Technology Letters, 2022,doi: 10.1002/mop.33156.
    [43] LOU C G, CHEN H J, LI X T, et al. Graphene oxide and polydimethylsiloxane coated quartz tuning fork for improved sensitive near- and mid-infrared detection[J]. Optics Express, 2021, 29(13): 20190-20204. doi: 10.1364/OE.428003
    [44] MA Y F, LANG Z T, HE Y, et al. Ultra-highly sensitive hydrogen chloride detection based on quartz-enhanced photothermal spectroscopy[J]. Sensors, 2021, 21(10): 3563. doi: 10.3390/s21103563
    [45] HU L E, ZHENG CH T, ZHANG M H, et al. Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy[J]. Photoacoustics, 2021, 21: 100230. doi: 10.1016/j.pacs.2020.100230
    [46] ZHANG Q D, GONG W H, CHANG J, et al. Long-distance free space gas detection system based on QEPTS technique for CH4 leakage monitoring[J]. Infrared Physics and Technology, 2022, 122: 104091. doi: 10.1016/j.infrared.2022.104091
    [47] HU L E, ZHENG CH T, ZHANG Y, et al. Compact all-fiber light-induced thermoelastic spectroscopy for gas sensing[J]. Optics Letters, 2020, 45(7): 1894-1897. doi: 10.1364/OL.388754
  • 加载中
图(10)
计量
  • 文章访问数:  1188
  • HTML全文浏览量:  742
  • PDF下载量:  593
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-20
  • 修回日期:  2022-07-06
  • 录用日期:  2022-09-09
  • 网络出版日期:  2022-09-28

目录

    /

    返回文章
    返回
    Baidu
    map