High quality factor dual wavelength Fano resonance based on continuous bound states
-
摘要:
为了提高品质因子(Quality value,
Q )以增强光与物质的耦合作用,本文提出一种结构简单、工艺制备要求低的介质超材料,它可激发对称保护的连续介质束缚态(bound states in the continuum , BICs)。该介质超材料具有四聚孔组成的平面纳米孔板,通过改变纳米孔的位置,可使对称保护BIC转变为对称保护的QBIC,进而诱导出两个高品质因子Q 值Fano共振。经计算Fano共振在非对称参数Δ =3 nm时,Q 值可达到1×e6。随后将QBIC和Fano共振的远场辐射分解为不同多极子分量的贡献,基于散射功率和电场矢量分布可以发现,介质超材料在λ 1出现高Q 值Fano共振主要是因为磁四极子和环偶极子的存在,而在λ 2出现高Q 值Fano共振主要是因为环偶极子的存在。最后分析计算了纳米孔边长和纳米孔填充材料对两个Fano共振的影响。本文的研究可以为研究制备高Q 值光学响应器件提供理论指导。Abstract:In order to improve the quality value (
Q ) to enhance the coupling between light and matter. In this paper, a dielectric metamaterial with simple structure, low fabrication requirements was proposed. It can excite symmetric protected bound states in the continuum (BICs). The dielectric metamaterial has a planar nanopore plate composed of tetrameric pores. By changing the position of the nanopores, the symmetrical protection BIC can be transformed into the symmetrical protection quasi BIC(QBIC), and then two highQ value Fano resonances can be induced. Through simulation calculation, the Fano resonanceQ value can reach 1×e6whenΔ =3 nm. Then, the far-field radiation of QBIC and Fano resonance is decomposed into the contributions of different multipole components. Based on the scattering power and electric field vector distribution, it can be found that the dielectric metamaterialsλ 1Fano resonance with highQ value is mainly due to magnetic quadrupole and toroidal dipole, whileλ 2Fano resonance has highQ value is mainly due to the toroidal dipole. Finally, the influence of nanopore side length and nanopore filling material on the two Fano resonances is analyzed and calculated. The research in this paper can provide theoretical guidance for the future research and preparation of highQ value optical response devices. -
图 7(a)和(b)分别是超材料在两个Fano共振波长附近的多极子散射功率;(c)和(d)分别是超材料在两个Fano共振波长处的电场矢量分布
Figure 7.(a) and (b) are the multipole scattering powers of metamaterials near the two Fano resonance wavelengths, respectively; (c) and (d) are the electric field vector distributions of metamaterials at two Fano resonance wavelengths, respectively
-
[1] WANG R X, ANSARI M A, AHMED H,et al. Compact multi-foci metalens spectrometer[J].light:science&applications, 2023, 12(103).doi:10.1038/s41377-023-01148-9 [2] LI J T, LI J, ZHENG CH L,et al. Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces[J].Carbon, 2021, 182: 506-515.doi:10.1016/j.carbon.2021.06.037 [3] 洪孝荣, 陈珊珊, 李家方. 可形变光学超构表面及其动态调控[J]. 中国光学,2021,14(4):867-885.doi:10.37188/CO.2021-0036HONG X R, CHEN SH SH, LI J F. Deformable optical metasurfaces with dynamic reconfiguration[J].Chinese Optics, 2021, 14(4): 867-885. (in Chinese)doi:10.37188/CO.2021-0036 [4] LI H, YU S L, YANG L,et al. High Q-factor multi-Fano resonances in all-dielectric double square hollow metamaterials[J].Optics&Laser Technology, 2021, 140: 107072. [5] SONG D F, WANG H, DENG M,et al. Toroidal dipole Fano resonances supported by lattice-perturbed dielectric nanohole arrays in the near-infrared region[J].Applied Optics, 2021, 60(12): 3458-3463.doi:10.1364/AO.422295 [6] CHEN X, FAN W H. Ultrahigh-Q toroidal dipole resonance in all-dielectric metamaterials for terahertz sensing[J].Optics Letters, 2019, 44(23): 5876-5879.doi:10.1364/OL.44.005876 [7] 方晓敏, 江孝伟, 武华. 双波长窄带宽介质超材料吸收器[J]. 中国光学,2021,14(6):1327-1340.doi:10.37188/CO.2021-0075FANG X M, JIANG X W, WU H. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J].Chinese Optics, 2021, 14(6): 1327-1340. (in Chinese)doi:10.37188/CO.2021-0075 [8] FANG C ZH, YANG Q Y, YUAN Q CH,et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces[J].Opto-Electronic Advances, 2021, 4(6): 200030.doi:10.29026/oea.2021.200030 [9] LI SH Y, ZHOU CH B, LIU T T,et al. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces[J].Physical Review A, 2019, 100(6): 063803.doi:10.1103/PhysRevA.100.063803 [10] WANG M, LI B Y, WANG W D. Symmetry-protected dual quasi-bound states in the continuum with high tunability in metasurface[J].Journal of Optics, 2020, 22(12): 125102.doi:10.1088/2040-8986/abc1fb [11] YANG L, YU SH L, LI H,et al. Multiple Fano resonances excitation on all-dielectric nanohole arrays metasurfaces[J].Optics Express, 2021, 29(10): 14905-14916.doi:10.1364/OE.419941 [12] HAN S, PITCHAPPA P, WANG W H,et al. Extended bound states in the continuum with symmetry-broken terahertz dielectric metasurfaces[J].Advanced Optical Materials, 2021, 9(7): 2002001.doi:10.1002/adom.202002001 [13] CONG L Q, SINGH R. Symmetry-protected dual bound states in the continuum in metamaterials[J].Advanced Optical Materials, 2019, 7(13): 1900383. [14] TIAN S, DERESHGI S A, HADIBRATA W,et al. Highly efficient light absorption of monolayer graphene by quasi-bound state in the continuum[J].Nanomaterials, 2021, 11(2): 484.doi:10.3390/nano11020484 [15] SADRIEVA Z F, SINEV I S, KOSHELEV K L,et al. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness[J].ACS Photonics, 2017, 4(4): 723-727.doi:10.1021/acsphotonics.6b00860 [16] 庞慧中, 王鑫, 王俊林, 等. 双频带太赫兹超材料吸波体传感器传感特性[J]. 物理学报,2021,70(16):168101.doi:10.7498/aps.70.20210062PANG H ZH, WANG X, WANG J L,et al. Sensing characteristics of dual band terahertz metamaterial absorber sensor[J].Acta Physica Sinica, 2021, 70(16): 168101. (in Chinese)doi:10.7498/aps.70.20210062 [17] BI K, GUO Y SH, LIU X M,et al. Magnetically tunable Mie resonance-based dielectric metamaterials[J].Scientific Reports, 2014, 4(1): 7001.doi:10.1038/srep07001 [18] CONTEDUCA D, BARTH I, PITRUZZELLO G,et al. Dielectric nanohole array metasurface for high-resolution near-field sensing and imaging[J].Nature Communications, 2021, 12(1): 3293.doi:10.1038/s41467-021-23357-9 [19] 孙光厚. 全介质超构材料中Fano共振研究[D]. 南京: 南京大学, 2018: 14-20.SUN G H. Research of Fano resonances in all-dielectric metamaterials[D]. Nanjing: Nanjing University, 2018: 14-20. (in Chinese) [20] OVERVIG A C, MALEK S C, CARTER M J,et al. Selection rules for quasibound states in the continuum[J].Physical Review B, 2020, 102(3): 035434.doi:10.1103/PhysRevB.102.035434 [21] CHEN X, FAN W H. Toroidal metasurfaces integrated with microfluidic for terahertz refractive index sensing[J].Journal of Physics D:Applied Physics, 2019, 52(48): 485104.doi:10.1088/1361-6463/ab3ea0 [22] CHEN X, FAN W H, YAN H. Toroidal dipole bound states in the continuum metasurfaces for terahertz nanofilm sensing[J].Optics Express, 2020, 28(11): 17102-17112.doi:10.1364/OE.394416 [23] DMITRIEV V, KUPRIIANOV A S, SANTOS S D S,et al. Symmetry analysis of trimer-based all-dielectric metasurfaces with toroidal dipole modes[J].Journal of Physics D:Applied Physics, 2021, 54(11): 115107.doi:10.1088/1361-6463/abccf1 [24] 郭林燕. 环形偶极子超介质的实现与特性研究[D]. 武汉: 华中科技大学, 2016: 27-37.GUO L Y. Toroidal dipolar metamaterials and their characteristics[D]. Wuhan: Huazhong University of Science and Technology, 2016: 27-37. (in Chinese) [25] BOGDANOV A A, KOSHELEV K L, KAPITANOVA P V,et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime[J].Advanced Photonics, 2019, 1(1): 016001.