留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于连续束缚态的高品质因子双波长Fano共振

王琳,董繁龙

downloadPDF
王琳, 董繁龙. 基于连续束缚态的高品质因子双波长Fano共振[J]. , 2023, 16(4): 824-832. doi: 10.37188/CO.2022-0166
引用本文: 王琳, 董繁龙. 基于连续束缚态的高品质因子双波长Fano共振[J]. , 2023, 16(4): 824-832.doi:10.37188/CO.2022-0166
WANG Lin, DONG Fan-long. High quality factor dual wavelength Fano resonance based on continuous bound states[J]. Chinese Optics, 2023, 16(4): 824-832. doi: 10.37188/CO.2022-0166
Citation: WANG Lin, DONG Fan-long. High quality factor dual wavelength Fano resonance based on continuous bound states[J].Chinese Optics, 2023, 16(4): 824-832.doi:10.37188/CO.2022-0166

基于连续束缚态的高品质因子双波长Fano共振

doi:10.37188/CO.2022-0166
基金项目:国家自然科学基金(No. 61575008);深圳市博士后科研资助项目(No. 202028555301027);衢州市指导性科技攻关项目(No. 2021076)
详细信息
    作者简介:

    王 琳(1984—),女,江苏徐州人,硕士,讲师,2009年于南京邮电大学获得硕士学位,主要从事高性能传感器研发及在工业领域的应用。E-mail:cindw@126.com

    董繁龙(1987—),男,江苏徐州人,博士,副教授,2016年于北京工业大学获得博士学位,主要从事高功率半导体 器及超材料的研究。E-mail:dongfanlong@sztu.edu.cn

  • 中图分类号:S220.4

High quality factor dual wavelength Fano resonance based on continuous bound states

Funds:Supported by National Natural Science Foundation of China (No. 61575008); Shenzhen Postdoctoral Scientific Research Funding Project (No. 202028555301027); Quzhou Guiding Science and Technology Research Project (No. 2021076)
More Information
  • 摘要:

    为了提高品质因子(Quality value, Q )以增强光与物质的耦合作用,本文提出一种结构简单、工艺制备要求低的介质超材料,它可激发对称保护的连续介质束缚态(bound states in the continuum , BICs)。该介质超材料具有四聚孔组成的平面纳米孔板,通过改变纳米孔的位置,可使对称保护BIC转变为对称保护的QBIC,进而诱导出两个高品质因子 Q 值Fano共振。经计算Fano共振在非对称参数 Δ =3 nm时, Q 值可达到1×e6。随后将QBIC和Fano共振的远场辐射分解为不同多极子分量的贡献,基于散射功率和电场矢量分布可以发现,介质超材料在 λ 1出现高 Q 值Fano共振主要是因为磁四极子和环偶极子的存在,而在 λ 2出现高 Q 值Fano共振主要是因为环偶极子的存在。最后分析计算了纳米孔边长和纳米孔填充材料对两个Fano共振的影响。本文的研究可以为研究制备高 Q 值光学响应器件提供理论指导。

  • 图 1介质超材料结构示意图

    Figure 1.Schematic diagram of medium metamaterial structure

    图 2介质超材料制备工艺流程

    Figure 2.Preparation process of dielectric metamaterials

    图 3(a)非对称参数对介质超材料透射光谱的影响;(b) 不同偏振对透射光谱的影响

    Figure 3.(a)Influence of asymmetric parameters on transmission spectrum of dielectric metamaterials; (b) influence of different polarization on transmission spectrum

    图 4介质超材料分别在两个波长λ1λ2处的电场分布。(a)λ1x-y面电场;(b)λ1z-y面电场;(c)λ2x-y面电场;(d)λ2z-y面电场

    Figure 4.Electric field distributions of dielectric metamaterials at two wavelengthsλ1andλ2, respectively. (a)x-yelectric field (λ1); (b)z-yelectric field (λ1); (c)x-yelectric field (λ2); (d)z-yelectric field (λ2)

    图 5Fano共振曲线拟合

    Figure 5.Fano resonance curve fitting

    图 6非对称参数对Q值的影响

    Figure 6.Influence of asymmetric parameters onQvalue

    图 7(a)和(b)分别是超材料在两个Fano共振波长附近的多极子散射功率;(c)和(d)分别是超材料在两个Fano共振波长处的电场矢量分布

    Figure 7.(a) and (b) are the multipole scattering powers of metamaterials near the two Fano resonance wavelengths, respectively; (c) and (d) are the electric field vector distributions of metamaterials at two Fano resonance wavelengths, respectively

    图 8结构参数对超材料共振波长的影响。(a)纳米孔边长r;(b)纳米孔填充材料折射率n1

    Figure 8.The influence of structural parameters on the resonant wavelength of metamaterials. (a) Nano pore side lengthr; (b) refractive indexn1of nano pore filling material

  • [1] WANG R X, ANSARI M A, AHMED H,et al. Compact multi-foci metalens spectrometer[J].light:science&applications, 2023, 12(103).doi:10.1038/s41377-023-01148-9
    [2] LI J T, LI J, ZHENG CH L,et al. Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces[J].Carbon, 2021, 182: 506-515.doi:10.1016/j.carbon.2021.06.037
    [3] 洪孝荣, 陈珊珊, 李家方. 可形变光学超构表面及其动态调控[J]. 中国光学,2021,14(4):867-885.doi:10.37188/CO.2021-0036

    HONG X R, CHEN SH SH, LI J F. Deformable optical metasurfaces with dynamic reconfiguration[J].Chinese Optics, 2021, 14(4): 867-885. (in Chinese)doi:10.37188/CO.2021-0036
    [4] LI H, YU S L, YANG L,et al. High Q-factor multi-Fano resonances in all-dielectric double square hollow metamaterials[J].Optics&Laser Technology, 2021, 140: 107072.
    [5] SONG D F, WANG H, DENG M,et al. Toroidal dipole Fano resonances supported by lattice-perturbed dielectric nanohole arrays in the near-infrared region[J].Applied Optics, 2021, 60(12): 3458-3463.doi:10.1364/AO.422295
    [6] CHEN X, FAN W H. Ultrahigh-Q toroidal dipole resonance in all-dielectric metamaterials for terahertz sensing[J].Optics Letters, 2019, 44(23): 5876-5879.doi:10.1364/OL.44.005876
    [7] 方晓敏, 江孝伟, 武华. 双波长窄带宽介质超材料吸收器[J]. 中国光学,2021,14(6):1327-1340.doi:10.37188/CO.2021-0075

    FANG X M, JIANG X W, WU H. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J].Chinese Optics, 2021, 14(6): 1327-1340. (in Chinese)doi:10.37188/CO.2021-0075
    [8] FANG C ZH, YANG Q Y, YUAN Q CH,et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces[J].Opto-Electronic Advances, 2021, 4(6): 200030.doi:10.29026/oea.2021.200030
    [9] LI SH Y, ZHOU CH B, LIU T T,et al. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces[J].Physical Review A, 2019, 100(6): 063803.doi:10.1103/PhysRevA.100.063803
    [10] WANG M, LI B Y, WANG W D. Symmetry-protected dual quasi-bound states in the continuum with high tunability in metasurface[J].Journal of Optics, 2020, 22(12): 125102.doi:10.1088/2040-8986/abc1fb
    [11] YANG L, YU SH L, LI H,et al. Multiple Fano resonances excitation on all-dielectric nanohole arrays metasurfaces[J].Optics Express, 2021, 29(10): 14905-14916.doi:10.1364/OE.419941
    [12] HAN S, PITCHAPPA P, WANG W H,et al. Extended bound states in the continuum with symmetry-broken terahertz dielectric metasurfaces[J].Advanced Optical Materials, 2021, 9(7): 2002001.doi:10.1002/adom.202002001
    [13] CONG L Q, SINGH R. Symmetry-protected dual bound states in the continuum in metamaterials[J].Advanced Optical Materials, 2019, 7(13): 1900383.
    [14] TIAN S, DERESHGI S A, HADIBRATA W,et al. Highly efficient light absorption of monolayer graphene by quasi-bound state in the continuum[J].Nanomaterials, 2021, 11(2): 484.doi:10.3390/nano11020484
    [15] SADRIEVA Z F, SINEV I S, KOSHELEV K L,et al. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness[J].ACS Photonics, 2017, 4(4): 723-727.doi:10.1021/acsphotonics.6b00860
    [16] 庞慧中, 王鑫, 王俊林, 等. 双频带太赫兹超材料吸波体传感器传感特性[J]. 物理学报,2021,70(16):168101.doi:10.7498/aps.70.20210062

    PANG H ZH, WANG X, WANG J L,et al. Sensing characteristics of dual band terahertz metamaterial absorber sensor[J].Acta Physica Sinica, 2021, 70(16): 168101. (in Chinese)doi:10.7498/aps.70.20210062
    [17] BI K, GUO Y SH, LIU X M,et al. Magnetically tunable Mie resonance-based dielectric metamaterials[J].Scientific Reports, 2014, 4(1): 7001.doi:10.1038/srep07001
    [18] CONTEDUCA D, BARTH I, PITRUZZELLO G,et al. Dielectric nanohole array metasurface for high-resolution near-field sensing and imaging[J].Nature Communications, 2021, 12(1): 3293.doi:10.1038/s41467-021-23357-9
    [19] 孙光厚. 全介质超构材料中Fano共振研究[D]. 南京: 南京大学, 2018: 14-20.

    SUN G H. Research of Fano resonances in all-dielectric metamaterials[D]. Nanjing: Nanjing University, 2018: 14-20. (in Chinese)
    [20] OVERVIG A C, MALEK S C, CARTER M J,et al. Selection rules for quasibound states in the continuum[J].Physical Review B, 2020, 102(3): 035434.doi:10.1103/PhysRevB.102.035434
    [21] CHEN X, FAN W H. Toroidal metasurfaces integrated with microfluidic for terahertz refractive index sensing[J].Journal of Physics D:Applied Physics, 2019, 52(48): 485104.doi:10.1088/1361-6463/ab3ea0
    [22] CHEN X, FAN W H, YAN H. Toroidal dipole bound states in the continuum metasurfaces for terahertz nanofilm sensing[J].Optics Express, 2020, 28(11): 17102-17112.doi:10.1364/OE.394416
    [23] DMITRIEV V, KUPRIIANOV A S, SANTOS S D S,et al. Symmetry analysis of trimer-based all-dielectric metasurfaces with toroidal dipole modes[J].Journal of Physics D:Applied Physics, 2021, 54(11): 115107.doi:10.1088/1361-6463/abccf1
    [24] 郭林燕. 环形偶极子超介质的实现与特性研究[D]. 武汉: 华中科技大学, 2016: 27-37.

    GUO L Y. Toroidal dipolar metamaterials and their characteristics[D]. Wuhan: Huazhong University of Science and Technology, 2016: 27-37. (in Chinese)
    [25] BOGDANOV A A, KOSHELEV K L, KAPITANOVA P V,et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime[J].Advanced Photonics, 2019, 1(1): 016001.
  • 加载中
图(8)
计量
  • 文章访问数:299
  • HTML全文浏览量:246
  • PDF下载量:246
  • 被引次数:0
出版历程
  • 收稿日期:2022-07-18
  • 录用日期:2022-11-11
  • 修回日期:2022-08-15
  • 网络出版日期:2023-02-09

目录

    /

      返回文章
      返回
        Baidu
        map