留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase-extracting method of optical frequency scanning interference signals based on the CEEMD-HT algorithm

YANG Ke-yuan DENG Zhong-wen CHEN Wen-jun YAO Xin SUN Hai-feng SHEN Li-rong

杨克元, 邓忠文, 陈文军, 姚鑫, 孙海峰, 沈利荣. 基于互补集合经验模态分解结合希尔伯特变换的光频扫描干涉信号相位提取方法[J]. 188bet网站真的吗 , 2023, 16(3): 682-700. doi: 10.37188/CO.2022-0173
引用本文: 杨克元, 邓忠文, 陈文军, 姚鑫, 孙海峰, 沈利荣. 基于互补集合经验模态分解结合希尔伯特变换的光频扫描干涉信号相位提取方法[J]. 188bet网站真的吗 , 2023, 16(3): 682-700. doi: 10.37188/CO.2022-0173
YANG Ke-yuan, DENG Zhong-wen, CHEN Wen-jun, YAO Xin, SUN Hai-feng, SHEN Li-rong. Phase-extracting method of optical frequency scanning interference signals based on the CEEMD-HT algorithm[J]. Chinese Optics, 2023, 16(3): 682-700. doi: 10.37188/CO.2022-0173
Citation: YANG Ke-yuan, DENG Zhong-wen, CHEN Wen-jun, YAO Xin, SUN Hai-feng, SHEN Li-rong. Phase-extracting method of optical frequency scanning interference signals based on the CEEMD-HT algorithm[J]. Chinese Optics, 2023, 16(3): 682-700. doi: 10.37188/CO.2022-0173

基于互补集合经验模态分解结合希尔伯特变换的光频扫描干涉信号相位提取方法

详细信息
  • 中图分类号: TH741.1

Phase-extracting method of optical frequency scanning interference signals based on the CEEMD-HT algorithm

doi: 10.37188/CO.2022-0173
Funds: Supported by National Natural Science Foundation of China (No. 52205576); Natural Science Basic Research Program of Shaanxi Province (No. 2021JQ-187); Foundamental Research Funds for the Central Universities (No. XJS212203)
More Information
    Author Bio:

    Yang Ke-yuan (1983—), male, born in Jining, Shandong Province, postdoctoral researcher, graduated from University of Electronic Science and Technology in June 2010, mainly engaged in the research on aircraft measurement and control technology, inter-satellite measurement technology. E-mail: ykymail@126.com

    Deng Zhong-wen (1987—), male, from Karamay, Xinjiang, lecturer, Ph.D., received his Ph.D. degree from the School of Mechanical Engineering, Xi'an Jiaotong University in 2020, mainly engaged in the research of high-precision large-scale measurement and optical frequency scanning interferometry. E-mail: zwdeng@xidian.edu.cn

    Corresponding author: zwdeng@xidian.edu.cn
  • 摘要:

    光频扫描非线性会影响光频扫描干涉(FSI)信号的相位提取精度,进而降低扫频干涉测距精度。针对这一问题,本文提出了一种基于互补集合经验模态分解结合希尔伯特变换(CEEMD-HT)算法的干涉信号相位提取方法。在CEEMD-HT算法进行理论推导和仿真分析的基础上,通过仿真验证了该算法对非平稳扫频干涉信号相位求解的有效性。进一步采用FSI实验系统中的真实输出光频率作为仿真条件进行了仿真实验,仿真结果表明CEEMD-HT算法对干涉信号相位的求解精度以及FSI测距精度都有显著的改善。最后,通过FSI测距系统的测距实验对所提出的干涉信号相位提取方法进行验证。结果表明:在2 m自由空间测量范围内,基于CEEMD-HT算法的重复测距精度为2.79 μm,相较于EMD-HT和直接测量法分别提高了5.19倍和8.28倍。

     

  • 图 1  FSI测距系统原理示意图

    Figure 1.  Schematic of the FSI ranging system

    图 2  干涉信号的相位分解示意图

    Figure 2.  Schematic diagram of the interferometric phase decomposition

    图 3  EMD对非稳干涉信号的分解重构示意图

    Figure 3.  Schematic diagram of the EMD decomposition and reconstruction of the non-stationary interference signal

    图 4  CEEMD算法流程示意图

    Figure 4.  Schematic diagram of CEEMD algorithm flow

    图 5  CEEMD对干涉信号的分解重构示意图

    Figure 5.  Schematic diagram of the decomposition and reconstruction of the interference signal via CEEMD

    图 6  FSI实验系统示意图

    Figure 6.  Schematic diagram of the FSI experimental system

    图 7  单周期相位差提取仿真结果对比图

    Figure 7.  Comparison of simulation results of single cycle phase difference extraction

    图 8  测距仿真结果对比图

    Figure 8.  Comparison of the ranging simulation results of different phase extracting methods

    图 9  单次测量用时对比图

    Figure 9.  Comparison of single measurement time

    图 10  实测干涉信号处理对比图

    Figure 10.  Comparison of measured interference signal processing results

    图 11  FSI实验测距结果

    Figure 11.  Experiment results of the FSI ranging measurement

    表  1  Simulation parameters of the scanning nonlinearity

    Table  1.   Simulation parameters of the scanning nonlinearity

    ParametersParameter nameValue/unit
    aInterference signal amplitude1 V
    ${\upsilon _0}$ECDL initial optical frequency0 Hz
    $\Delta \upsilon $Optical frequency scanning range2 THz
    LMeasured distance10 m
    nAir refractive index1
    cVelocity of light3×108 m/s
    tScan cycle5 s
    SNRSignal to noise ratio of
    interference signal
    25, 20, 15, 10 dB
    SInterference signal sampling frequency10 MHz
    下载: 导出CSV
    Baidu
  • [1] LU CH, LIU G D, LIU B G, et al. Absolute distance measurement system with micron-grade measurement uncertainty and 24 m range using frequency scanning interferometry with compensation of environmental vibration[J]. Optics Express, 2016, 24(26): 30215-30224. doi: 10.1364/OE.24.030215
    [2] SHI G, ZHANG F M, QU X H, et al. High-resolution frequency-modulated continuous-wave laser ranging for precision distance metrology applications[J]. Optical Engineering, 2014, 53(12): 122402. doi: 10.1117/1.OE.53.12.122402
    [3] SHI G, WANG W, ZHANG F M. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers[J]. Optics Communications, 2018, 411: 152-157. doi: 10.1016/j.optcom.2017.11.062
    [4] WANG ZH Y, LIU ZH G, DENG ZH W, et al. Phase extraction of non-stationary interference signal in frequency scanning interferometry using complex shifted Morlet wavelets[J]. Optics Communications, 2018, 420: 26-33. doi: 10.1016/j.optcom.2018.03.032
    [5] CHENG X R, LIU J CH, JIA L H, et al. Precision and repeatability improvement in frequency-modulated continuous-wave velocity measurement based on the splitting of beat frequency signals[J]. Optics Express, 2021, 29(18): 28582-28596. doi: 10.1364/OE.433637
    [6] DALE J, HUGHES B, LANCASTER A J, et al. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells[J]. Optics Express, 2014, 22(20): 24869-24893. doi: 10.1364/OE.22.024869
    [7] LIU G D, XU X K, LIU B G, et al. Dispersion compensation method based on focus definition evaluation functions for high-resolution laser frequency scanning interference measurement[J]. Optics Communications, 2017, 386: 57-64. doi: 10.1016/j.optcom.2016.10.052
    [8] XU X K, LONG K, XU J X, et al. The method of dispersion cancellation based on the forward and reverse tuning of a laser frequency-modulated continuous wave system[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 243-247.
    [9] WANG D F, YAO X, JIAO ZH K, et al. Time-delay interferometry for space-based gravitational wave detection[J]. Chinese Optics, 2021, 14(2): 275-288. (in Chinese) doi: 10.37188/CO.2020-0098
    [10] GONG H, LIU ZH G, ZHOU Y L, et al. Mode-hopping suppression of external cavity diode laser by mode matching[J]. Applied Optics, 2014, 53(4): 694-701. doi: 10.1364/AO.53.000694
    [11] DENG ZH W, LIU ZH G, LI B, et al. Precision improvement in frequency-scanning interferometry based on suppressing nonlinear optical frequency sweeping[J]. Optical Review, 2015, 22(5): 724-730. doi: 10.1007/s10043-015-0134-1
    [12] GONG H, LIU ZH G, ZHOU Y L, et al. Extending the mode-hop-free tuning range of an external-cavity diode laser by synchronous tuning with mode matching[J]. Applied Optics, 2014, 53(33): 7878-7884. doi: 10.1364/AO.53.007878
    [13] YÜKSEL K, WUILPART M, MÉGRET P. Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer[J]. Optics Express, 2009, 17(7): 5845-5851. doi: 10.1364/OE.17.005845
    [14] AHN T J, LEE J Y, KIM D Y. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation[J]. Applied Optics, 2005, 44(35): 7630-7634. doi: 10.1364/AO.44.007630
    [15] ROOS P A, REIBEL R R, BERG T, et al. Ultrabroadband optical chirp linearization for precision metrology applications[J]. Optics Letters, 2009, 34(23): 3692-3694. doi: 10.1364/OL.34.003692
    [16] DENG W, LIU ZH G, DENG ZH W, et al. Extraction of interference phase in frequency-scanning interferometry based on empirical mode decomposition and Hilbert transform[J]. Applied Optics, 2018, 57(9): 2299-2305. doi: 10.1364/AO.57.002299
    [17] BEDROSIAN E. A product theorem for Hilbert transforms[R]. Santa Monica: RAND Corporation, 1962.
    [18] RILLING G, FLANDRIN P, GONÇALVES P. On empirical mode decomposition and its algorithms[C]. Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, IEEE, 2003: 8-11.
    [19] WU ZH H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. doi: 10.1142/S1793536909000047
    [20] YEH J R, SHIEH J S, HUANG N E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156. doi: 10.1142/S1793536910000422
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  255
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-27
  • 修回日期:  2022-09-02
  • 网络出版日期:  2022-12-09

目录

    /

    返回文章
    返回
    Baidu
    map