-
摘要:
聚焦型太阳模拟器可以获得高倍汇聚的太阳辐射光斑,在太阳能热发电及热化学研究领域具有重要应用。为了获得均匀的太阳辐射光斑,提出了基于非成像光学的自由曲面聚光镜设计方法。详细阐述了设计原理与具体方法。设计了自由曲面聚光镜,并将其与包容角相同的非共轴椭球聚光镜进行对比。通过仿真分析验证了设计方法的正确性。仿真结果表明:使用额定功率为6 kW的氙灯作为光源时,自由曲面聚光镜构成的单灯太阳模拟器可以在直径为60 mm的目标面内提供平均辐照度为274.4 kW/m2的光斑,与非共轴椭球太阳模拟器相比,光斑不均匀度从18.28%下降到5.69%;七灯太阳模拟器可以产生平均辐照度为1.65 MW/m2的光斑,光斑不均匀度从13.19%下降到5.79%。
Abstract:The concentrating solar simulator can obtain solar radiation spots with high-power convergence, which has important applications in the fields of solar thermal power generation and thermochemical research. To obtain uniform solar radiation spots, a free-form surface condenser design method based on non-imaging optics is proposed, and its design principle and specific method are described. The designed free-form condenser is compared with a non-coaxial ellipsoidal condenser with the same containment angle, and the correctness of its design method is verified by simulation analysis. The simulation results show that when a xenon lamp with a rated power of 6 kW is used as the light source, the single-lamp solar simulator composed of a free-form condenser can produce a spot with an average irradiance of 274.4 kW/m2 in the target region with a diameter of 60 mm. The spot’s unevenness decreases from 18.28% to 5.69% compared with that of a non-coaxial ellipsoidal solar simulator. The seven-lamp solar simulator can produce a spot with an average irradiance of 1.65 MW/m2, with a spot unevenness that decreases from 13.19% to 5.49%.
-
Key words:
- solar simulator /
- free-form surface /
- optical design /
- spot uniformity /
- heat flux distribution
-
-
[1] JIANG B SH, LOUGOU B G, ZHANG H, et al. Analysis of high-flux solar irradiation distribution characteristic for solar thermochemical energy storage application[J]. Applied Thermal Engineering, 2020, 181: 115900. doi: 10.1016/j.applthermaleng.2020.115900 [2] LI J Y, HU J P, LIN M. A flexibly controllable high-flux solar simulator for concentrated solar energy research from extreme magnitudes to uniform distributions[J]. Renewable and Sustainable Energy Reviews, 2022, 157: 112084. doi: 10.1016/j.rser.2022.112084 [3] WANG J K, QIU Y, LI Q, et al. Design and experimental study of a 30 kWe adjustable solar simulator delivering high and uniform flux[J]. Applied Thermal Engineering, 2021, 195: 117215. doi: 10.1016/j.applthermaleng.2021.117215 [4] POTTAS J, LI L F, HABIB M, et al. Optical alignment and radiative flux characterization of a multi-source high-flux solar simulator[J]. Solar Energy, 2022, 236: 434-444. doi: 10.1016/j.solener.2022.02.026 [5] MILANESE M, COLANGELO G, DE RISI A. Development of a high-flux solar simulator for experimental testing of high-temperature applications[J]. Energies, 2021, 14(11): 3124. doi: 10.3390/en14113124 [6] GILL R, BUSH E, HAUETER P, et al. Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns[J]. Review of Scientific Instruments, 2015, 86(12): 125107. doi: 10.1063/1.4936976 [7] CHU SH ZH, BAI F W, NIE F L, et al. Description and characterization of a 114-kWe high-flux solar simulator[J]. Journal of Solar Energy Engineering, 2021, 143(1): 011001. doi: 10.1115/1.4047295 [8] KRUEGER K R, DAVIDSON J H, LIPIŃSKI W. Design of a new 45 kWe high-flux solar simulator for high-temperature solar thermal and thermochemical research[J]. Journal of Solar Energy Engineering, 2011, 133(1): 011013. doi: 10.1115/1.4003298 [9] KRUEGER K R, LIPIŃSKI W, DAVIDSON J H. Operational performance of the university of minnesota 45 kWe high-flux solar simulator[J]. Journal of Solar Energy Engineering, 2013, 135(4): 044501. doi: 10.1115/1.4023595 [10] ZHU Q B, XUAN Y M, LIU X L, et al. A 130 kWe solar simulator with tunable ultra-high flux and characterization using direct multiple lamps mapping[J]. Applied Energy, 2020, 270: 115165. doi: 10.1016/j.apenergy.2020.115165 [11] 刘洪波, 高雁, 王丽, 等. 高倍聚光太阳模拟器的设计[J]. 中国光学,2011,4(6):594-599.LIU H B, GAO Y, WANG L, et al. Design of high-flux solar simulator[J]. Chinese Optics, 2011, 4(6): 594-599. (in Chinese) [12] ZHU Q, XUAN Y, LIU X, et al. . Design and operation of a versatile, low-cost, high-flux solar simulator for automated CPV cell and module testing[J]. Applied Energy, 2020, 270: 115165. [13] XIAO J, WEI X D, GILABER R N, et al. Design and characterization of a high-flux non-coaxial concentrating solar simulator[J]. Applied Thermal Engineering, 2018, 145: 201-211. doi: 10.1016/j.applthermaleng.2018.09.050 [14] 张燃. 大口径发散式同轴太阳模拟器及其关键技术研究[D]. 长春: 长春理工大学, 2019.ZHANG R. Research on a heavy caliber divergent coaxial solar simulator and its key technology[D]. Changchun: Changchun University of Science and Technology, 2019. (in Chinese) [15] 程颖. 光学自由曲面设计方法及应用研究[D]. 天津: 天津大学, 2013.CHENG Y. Study on design and application of freeform optics[D]. Tianjin: Tianjin University, 2013. (in Chinese) [16] 顾国超. 基于数学法的自由曲面照明光学系统设计方法研究[D]. 长春: 中国科学院大学, 2019.GU G CH. Study on the design of freeform surface illumination system based on mathematical method[D]. Changchun: University of Chinese Academy of Sciences, 2019. (in Chinese) [17] 高玲, 张国玉, 苏拾, 等. 基于全光谱输出太阳模拟器氙灯光源的研究[J]. 长春理工大学学报(自然科学版),2012,35(2):82-84,92.GAO L, ZHANG G Y, SU SH, et al. Study on Xe-lamp sources of full spectrum solar simulators[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2012, 35(2): 82-84,92. (in Chinese) [18] 顾国超, 刘洪波, 陈家奇, 等. 基于Supporting-Ellipsoid方法的自由曲面构造[J]. 中国光学,2014,7(5):823-829.GU G CH, LIU H B, CHEN J Q, et al. Construction of freeform surface based on Supporting-Ellipsoid method[J]. Chinese Optics, 2014, 7(5): 823-829. (in Chinese) [19] 任兰旭, 魏秀东, 牛文达, 等. 非共轴椭球面聚光阵列式高焦比太阳模拟器[J]. 光学学报,2012,32(10):1022002. doi: 10.3788/AOS201232.1022002REN L X, WEI X D, NIU W D, et al. A high flux solar simulator based on an array of non-coaxial ellipsoidal reflector[J]. Acta Optica Sinica, 2012, 32(10): 1022002. (in Chinese) doi: 10.3788/AOS201232.1022002 [20] SARWAR J, GEORGAKIS G, LACHANCE R, et al. Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications[J]. Solar Energy, 2014, 100: 179-194. doi: 10.1016/j.solener.2013.12.008 [21] PETRASCH J, CORAY P, MEIER A, et al. A novel 50kW 11, 000 suns high-flux solar simulator based on an array of xenon arc lamps[J]. Journal of Solar Energy Engineering, 2007, 129(4): 405-411. doi: 10.1115/1.2769701 [22] 张赢, 丁红昌, 赵长福, 等. 基于多 传感器装配的自由曲面法线找正方法研究[J]. 中国光学,2021,14(2):344-352. doi: 10.37188/CO.2020-0205ZHANG Y, DING H CH, ZHAO CH F, et al. The normal alignment method for freeform surfaces based on multiple laser sensor assembly[J]. Chinese Optics, 2021, 14(2): 344-352. (in Chinese) doi: 10.37188/CO.2020-0205 [23] 梁子健, 杨甬英, 赵宏洋, 等. 非球面光学元件面型检测技术研究进展与最新应用[J]. 中国光学,2022,15(2):161-186. doi: 10.37188/CO.2021-0143LIANG Z J, YANG Y Y, ZHAO H Y, et al. Advances in research and applications of optical aspheric surface metrology[J]. Chinese Optics, 2022, 15(2): 161-186. (in Chinese) doi: 10.37188/CO.2021-0143 [24] 张磊, 吴金灵, 刘仁虎, 等. 光学自由曲面自适应干涉检测研究新进展[J]. 中国光学,2021,14(2):227-244. doi: 10.37188/CO.2020-0126ZHANG L, WU J L, LIU R H, et al. Research advances in adaptive interferometry for optical freeform surfaces[J]. Chinese Optics, 2021, 14(2): 227-244. (in Chinese) doi: 10.37188/CO.2020-0126