留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的Fano共振超材料设计

杨知虎,傅佳慧,张玉萍,张会云

downloadPDF
杨知虎, 傅佳慧, 张玉萍, 张会云. 基于深度学习的Fano共振超材料设计[J]. , 2023, 16(4): 816-823. doi: 10.37188/CO.2022-0208
引用本文: 杨知虎, 傅佳慧, 张玉萍, 张会云. 基于深度学习的Fano共振超材料设计[J]. , 2023, 16(4): 816-823.doi:10.37188/CO.2022-0208
YANG Zhi-hu, FU Jia-hui, ZHANG Yu-ping, ZHANG Hui-yun. Fano resonances design of metamaterials based on deep learning[J]. Chinese Optics, 2023, 16(4): 816-823. doi: 10.37188/CO.2022-0208
Citation: YANG Zhi-hu, FU Jia-hui, ZHANG Yu-ping, ZHANG Hui-yun. Fano resonances design of metamaterials based on deep learning[J].Chinese Optics, 2023, 16(4): 816-823.doi:10.37188/CO.2022-0208

基于深度学习的Fano共振超材料设计

doi:10.37188/CO.2022-0208
基金项目:国家自然科学基金(No. 61875106,No. 62105187);山东省自然科学基金(No. ZR2021QF010)
详细信息
    作者简介:

    杨知虎(1998—),男,黑龙江牡丹江人,硕士研究生,2020年于山东科技大学获得学士学位,主要研究方向为基于深度学习的超材料设计。E-mail:383048999@qq.com

    张会云(1974—),男,山东沂水人,博士,教授,博士生导师,2008年于天津大学获得博士学位,主要从事太赫兹功能器件方面的研究。E-mail:sdust_thz@126.com

  • 中图分类号:O436.3

Fano resonances design of metamaterials based on deep learning

Funds:Supported by National Natural Science Foundation of China (No. 61875106, No. 62105187); Natural Science Foundation of Shandong Province (No. ZR2021QF010)
More Information
    Corresponding author:sdust_thz@126.com
  • 摘要:

    本文提出了一种基于深度学习的超材料Fano共振设计方法,能够获得高Q共振的线宽、振幅和光谱位置特性。利用深度神经网络建立结构参数和透射谱曲线之间的映射,正向网络实现对透射谱的预测,逆向网络实现对高Q共振按需设计,设计过程中实现了低均方误差(MSE),训练集的均方误差为 0.007。与传统方法需要耗时的逐个数值模拟相比,深度学习设计方法大大简化了设计过程,实现了高效、快速的设计目标。对Fano共振的设计也可推广应用到其它类型的超材料的自动逆向设计,显著提高了更复杂的超材料设计的可行性。

  • 图 1用于双向神经网络设计的框架示意图。(a)ASRR的单位单元结构图;(b)正向神经网络图;(c)正向预测输出的透射谱;(d)逆向设计输出的最优参数;(e)逆向神经网络图;(f)逆向设计输入的透射谱

    Figure 1.Schematic diagram of the framework used for the bidirectional neural network design process. (a) The unit cell structure diagram of ASRR; (b) the forward neural network diagram; (c) transmission spectrum of the forward prediction output; (d) optimal parameters of the reverse design output; (e) inverse neural network diagram; (f) transmission spectrum of the inverse design input

    图 2神经网络模型

    Figure 2.Neural network model

    图 3Sigmoid激活函数

    Figure 3.Sigmoid activation function

    图 4DNN的结构参数

    Figure 4.Structural parameters of DNN

    图 5正向神经网络损失

    Figure 5.Forward neural network loss

    图 6不同网络层数对损失函数的影响对比

    Figure 6.Comparison of the influence of different network layers on the loss function

    图 7正向预测结果和数值模拟结果

    Figure 7.Forward prediction results and numerical simulation results

    图 8(a) 逆向神经网络的模型训练损失演变。(b) 逆向神经网络输出,CST仿真结果和目标频谱比较

    Figure 8.(a) Evolution of model training loss for an inverse neural network. (b) Comparison of inverse neural network output,CST simulation results and target spectrum

    图 9优化后的模型俯视图。沿y轴入射,周期性P=90 µm,铝环厚度H=14 µm,铝环臂宽W=6 µm,间隙G=3 µm,非对称性D=3 µm

    Figure 9.Top view of the optimized model. Incident along they-axis, periodicityP=90 µm. Aluminum ring thicknessH=14 μm, aluminum ring arm widthW=6 μm, gapG=3 μm, asymmetric tuning factorD=3 μm

    图 10在0.97 THz处,结构参数为[70,14,6,3,3]晶格失配和[90,14,6,3,3]晶格匹配条件下,Fano的近场总电场和磁场振幅|E|和|B|。同一场的所有贴图共享相同范围的颜色比例。

    Figure 10.The near-field total electric and magnetic field amplitude, |E| and |B| of the Fano resonance under the conditions of the structural parameters of [70, 14, 6, 3, 3] lattice mismatched and [90, 14, 6, 3, 3] lattice matched. All maps of the same field share a color scale with the same range

    表 1训练神经网络的数据值

    Table 1.Data values of training neural network (μm)

    P H W G D
    70 10 5 1 1
    71 11 6 2 2
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    125 15 7 3 3
    下载: 导出CSV
  • [1] FANO U. Effects of configuration interaction on intensities and phase shifts[J].Physical Review, 1961, 124(6): 1866-1878.doi:10.1103/PhysRev.124.1866
    [2] FEDOTOV V A, ROSE M, PROSVIRNIN S L,et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J].Physical Review Letters, 2007, 99(14): 147401.doi:10.1103/PhysRevLett.99.147401
    [3] HAO F, SONNEFRAUD Y, VAN DORPE P,et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance[J].Nano Letters, 2008, 8(11): 3983-3988.doi:10.1021/nl802509r
    [4] RAHMANI M, LUK'YANCHUK B, HONG M H. Fano resonance in novel plasmonic nanostructures[J].Laser&Photonics Reviews, 2013, 7(3): 329-349.
    [5] KUZNETSOV A I, MIROSHNICHENKO A E, BRONGERSMA M L,et al. Optically resonant dielectric nanostructures[J].Science, 2016, 354(6314): eaag2472.doi:10.1126/science.aag2472
    [6] CHEN J J, GAN F Y, WANG Y J,et al. Plasmonic sensing and modulation based on Fano resonances[J].Advanced Optical Materials, 2018, 6(9): 1701152.doi:10.1002/adom.201701152
    [7] LIMONOV M F. Fano resonance for applications[J].Advances in Optics and Photonics, 2021, 13(3): 703-771.doi:10.1364/AOP.420731
    [8] 付娆, 李子乐, 郑国兴. 超构表面的振幅调控及其功能器件研究进展[J]. 中国光学,2021,14(4):886-899.doi:10.37188/CO.2021-0017

    FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J].Chinese Optics, 2021, 14(4): 886-899. (in Chinese)doi:10.37188/CO.2021-0017
    [9] 林婧, 李琦, 邱孟, 等. 人工原子间耦合: 超构表面调控电磁波的新自由度[J]. 中国光学,2021,14(4):717-735.doi:10.37188/CO.2021-0030

    LIN J, LI Q, QIU M,et al. Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves[J].Chinese Optics, 2021, 14(4): 717-735. (in Chinese)doi:10.37188/CO.2021-0030
    [10] 王锋, 刘星辰, 王政平, 等. 基于手性超材料的太赫兹波非对称传输的研究[J]. 哈尔滨工程大学学报,2015,36(12):1638-1641.doi:10.11990/jheu.201501046

    WANG F, LIU X CH, WANG ZH P,et al. A study of asymmetric transmission of terahertz waves based on chiral metamaterials[J].Journal of Harbin Engineering University, 2015, 36(12): 1638-1641. (in Chinese)doi:10.11990/jheu.201501046
    [11] MIROSHNICHENKO A E, FLACH S, KIVSHAR Y S. Fano resonances in nanoscale structures[J].Reviews of Modern Physics, 2010, 82(3): 2257-2298.doi:10.1103/RevModPhys.82.2257
    [12] LIU SH D, YANG ZH, LIU R P,et al. High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity[J].The Journal of Physical Chemistry C, 2011, 115(50): 24469-24477.doi:10.1021/jp209754m
    [13] CHANG W SH, LASSITER J B, SWANGLAP P,et al. A plasmonic Fano switch[J].Nano Letters, 2012, 12(9): 4977-4982.doi:10.1021/nl302610v
    [14] PIAO X J, YU S, PARK N. Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator[J].Optics Express, 2012, 20(17): 18994-18999.doi:10.1364/OE.20.018994
    [15] WU C, KHANIKAEV A B, SHVETS G. Broadband slow light metamaterial based on a double-continuum Fano resonance[J].Physical Review Letters, 2011, 106(10): 107403.doi:10.1103/PhysRevLett.106.107403
    [16] JAFAR-ZANJANI S, INAMPUDI S, MOSALLAEI H. Adaptive genetic algorithm for optical metasurfaces design[J].Scientific Reports, 2018, 8(1): 11040.doi:10.1038/s41598-018-29275-z
    [17] PHAN T, SELL D, WANG E W,et al. High-efficiency, large-area, topology-optimized metasurfaces[J].Light:Science&Applications, 2019, 8(1): 48.
    [18] RONG J J, YE W J. Multifunctional elastic metasurface design with topology optimization[J].Acta Materialia, 2020, 185: 382-399.doi:10.1016/j.actamat.2019.12.017
    [19] LECUN Y, BENGIO Y, HINTON G. Deep learning[J].Nature, 2015, 521(7553): 436-444.doi:10.1038/nature14539
    [20] 刘硕, 张霜, 崔铁军. 拓扑电路——新奇拓扑物理现象的研究平台[J]. 中国光学,2021,14(4):736-753.doi:10.37188/CO.2021-0095

    LIU SH, ZHANG SH, CUI T J. Topological circuit: a playground for exotic topological physics[J].Chinese Optics, 2021, 14(4): 736-753. (in Chinese)doi:10.37188/CO.2021-0095
    [21] 苏照贤, 姚恩旭, 黄玲玲, 等. 二维人工超材料的光学拓扑性质[J]. 中国光学,2021,14(4):955-967.doi:10.37188/CO.2021-0074

    SU ZH X, YAO E X, HUANG L L,et al. Optical topological characteristics of two dimensional artificial metamaterials[J].Chinese Optics, 2021, 14(4): 955-967. (in Chinese)doi:10.37188/CO.2021-0074
    [22] LI H, OTA K, DONG M X. Learning IoT in edge: deep learning for the internet of things with edge computing[J].IEEE Network, 2018, 32(1): 96-101.doi:10.1109/MNET.2018.1700202
    [23] SILVER D, HUANG A, MADDISON C J,et al. Mastering the game of Go with deep neural networks and tree search[J].Nature, 2016, 529(7587): 484-489.doi:10.1038/nature16961
    [24] NASSIF A B, SHAHIN I, ATTILI I,et al. Speech recognition using deep neural networks: a systematic review[J].IEEE Access, 2019, 7: 19143-19165.doi:10.1109/ACCESS.2019.2896880
    [25] NODA K, ARIE H, SUGA Y,et al. Multimodal integration learning of robot behavior using deep neural networks[J].Robotics and Autonomous Systems, 2014, 62(6): 721-736.doi:10.1016/j.robot.2014.03.003
    [26] MA W, CHENG F, LIU Y M. Deep-learning-enabled on-demand design of chiral metamaterials[J].ACS Nano, 2018, 12(6): 6326-6334.doi:10.1021/acsnano.8b03569
    [27] NADELL C C, HUANG B H, MALOF J M,et al. Deep learning for accelerated all-dielectric metasurface design[J].Optics Express, 2019, 27(20): 27523-27535.doi:10.1364/OE.27.027523
    [28] XU L, RAHMANI M, MA Y X,et al. Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach[J].Advanced Photonics, 2020, 2(2): 026003.
    [29] HOU ZH Y, ZHANG P Y, GE M F,et al. Metamaterial reverse multiple prediction method based on deep learning[J].Nanomaterials, 2021, 11(10): 2672.doi:10.3390/nano11102672
    [30] ZHOU X SH, XIAO Q D, WANG H. Metamaterials design method based on deep learning database[J].Journal of Physics:Conference Series, 2022, 2185: 012023.doi:10.1088/1742-6596/2185/1/012023
    [31] KHATIB O, REN S M, MALOF J,et al. Deep learning the electromagnetic properties of metamaterials—a comprehensive review[J].Advanced Functional Materials, 2021, 31(31): 2101748.doi:10.1002/adfm.202101748
    [32] TAN T C W, PLUM E, SINGH R. Lattice-enhanced Fano resonances from bound states in the continuum metasurfaces[J].Advanced Optical Materials, 2020, 8(6): 1901572.doi:10.1002/adom.201901572
  • 加载中
图(10)/ 表(1)
计量
  • 文章访问数:387
  • HTML全文浏览量:246
  • PDF下载量:260
  • 被引次数:0
出版历程
  • 收稿日期:2022-10-10
  • 修回日期:2022-11-11
  • 网络出版日期:2023-03-08

目录

    /

      返回文章
      返回
        Baidu
        map