-
摘要:
借鉴玻璃透镜的研究方法,提出了一种基于统计数据的液体透镜重复变焦精度指标,用于描述其变焦稳定性,并给出了液体透镜设计参数优化及材料优选的实验方法。首先,通过初步实验研究与分析,得到影响液体透镜重复变焦精度的主要影响因素——极性溶液体积、锥度、非极性溶液粘度;其次,以重复变焦精度和变焦范围作为评价指标,发现重复变焦精度与电压的关系不具有单调性,存在先升后降的现象。在此基础上,运用极差分析与综合平衡法,得到各因素的不同影响程度及最优参数组合,采用正交实验法优化设计参数。最后,实验验证了该方法的有效性。实验结果表明,优化后的液体透镜,在150 V电压处,重复变焦精度为0.2 m−1;在0~230 V电压范围内,变焦范围为−15.2~5.85 m−1。结果表明本文所提出的方法基本满足液体透镜变焦稳定可靠、精度高、变焦范围大等要求。
Abstract:Tacking the research of glass lenses as reference, a statistical data-based index of liquid lens zoom stability and liquid lens repeated zoom accuracy is proposed. An experimental method is presented to optimize the structural parameters and materials of the liquid lens. Firstly, the main factors affecting the accuracy of a liquid lens’ repeat zoom accuracy were obtained through preliminary experimental research, including the polar solution volume, taper and non-polar solution viscosity. Secondly, taking the accuracy of the liquid lens’s repeat zoom accuracy and zoom range as evaluation indicators, it was found that the relationship between the accuracy of the liquid lens’s repeat zoom and the voltage is not monotonic, and that it rises first and then falls. On this basis, through the range analysis and comprehensive balance method, the primary and secondary factors and the optimal combination of parameters is obtained. After that, orthogonal experiments were used to optimize the design parameters. Finally, the effectiveness of this method was verified by experiments. The experimental results show that the repeat zoom accuracy of the optimized liquid lens is 0.2 m−1, and the zoom range is −15.2−5.85 m−1over the voltage range of 0 to 230 V. It basically meets the requirements of stable and reliable, high precision, and large zoom range for liquid lens zoom.
-
表 1透镜零件尺寸表
Table 1.Part size of the lens
底径
a(mm)顶径
b(mm)高度
H(mm)锥度
α(°)4 6 4 14.04 8 26.57 10 36.87 4 6 6 9.46 6 8 8 10 4 6.14 4 15.00 7.22 6 8.29 8 表 2三因素三水平取值表
Table 2.Table of three factors and three levels
水平 因素 A(ul) B(°) C(mPa.s) 1 40 14.04 100 2 50 26.57 350 3 60 37.87 500 表 3正交实验结果
Table 3.Orthogonal experiment results
序号 实验因素 实验结果 A(ul) B(°) C(mPa·s) X(m−1) Y(m−1) 1 40 14.04 100 15.675 1.0960 2 40 26.57 350 15.720 1.0188 3 40 37.87 500 16.405 0.1252 4 50 14.04 350 20.940 0.4160 5 50 26.57 500 12.990 0.9975 6 50 37.87 100 15.235 0.6485 7 60 14.04 500 21.040 0.2000 8 60 26.57 100 12.220 1.2202 9 60 37.87 350 11.250 0.1814 表 4变焦精度极差分析结果
Table 4.Range analysis results of zoom accuracy
水平 因素 A B C k1 0.747 0.571 0.988 k2 0.687 1.079 0.539 k3 0.534 0.318 0.441 R 0.213 0.760 0.547 表 5变焦范围极差分析表
Table 5.Range analysis for zoom accuracy
水平 因素 A B C k1 15.933 19.218 14.377 k2 16.388 13.643 15.970 k3 14.837 14.297 16.812 R 1.552 5.575 2.435 -
[1] KUIPER S, HENDRIKS B H W. Variable-focus liquid lens for miniature cameras[J].Applied Physics Letters, 2004, 85(7): 1128-1130.doi:10.1063/1.1779954 [2] BERGE B, PESEUX J. Variable focal lens controlled by an external voltage: an application of electrowetting[J].The European Physical Journal E, 2000, 3(2): 159-163.doi:10.1007/s101890070029 [3] 黄翔, 林四英, 谷丹丹, 等. 液体变焦镜头的研究进展[J]. 中国光学,2019,12(6):1179-1194.doi:10.3788/co.20191206.1179HUANG X, LIN S Y, GU D D,et al. Review on progress of variable-focus liquid lens[J].Chinese Optics, 2019, 12(6): 1179-1194. (in Chinese)doi:10.3788/co.20191206.1179 [4] 崔建国, 王润诗, 袁伟, 等. 液体透镜研究现状与展望[J]. 重庆理工大学学报(自然科学),2016,30(11):105-110.CUI J G, WANG R SH, YUAN W,et al. Research status and prospects of liquid lens[J].Journal of Chongqing University of Technology(Natural Science), 2016, 30(11): 105-110. (in Chinese) [5] ZHAO P P, ATAMAN Ç, ZAPPE H. A miniaturized camera objective with 2X optical zoom[J].Proceedings of SPIE, 2018, 10545: 1054508. [6] 王琼华, 袁荣英, 刘超. 基于电润湿液体透镜的显微成像技术[J]. 北京航空航天大学学报,2022,48(9):1774-1781.WANG Q H, YUAN R Y, LIU CH. Microscopic imaging technology with electrowetting liquid lens[J].Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1774-1781. (in Chinese) [7] WANG L H, XU H J, TABATA S,et al. . High-speed focal tracking projection based on liquid lens[C].SIGGRAPH '20: ACM SIGGRAPH 2020 Emerging Technologies, ACM, 2020: 15. [8] 苏树钊, 姜海明, 夏宏燕, 等. 电控梯度折射率液晶透镜研究进展[J]. 液晶与显示,2022,37(3):310-341.doi:10.37188/CJLCD.2021-0278SU SH ZH, JIANG H M, XIA H Y,et al. Research progress of electronically controlled gradient refractive index liquid crystal lens[J].Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 310-341. (in Chinese)doi:10.37188/CJLCD.2021-0278 [9] 李中杨, 马国鹭, 曾国英, 等. 交流作用下液滴在派瑞林薄膜表面的润湿特性研究[J]. 真空科学与技术学报,2019,39(8):672-677.doi:10.13922/j.cnki.cjovst.2019.08.09LI ZH Y, MA G L, ZENG G Y,et al. AC electrowetting of NaCl droplet on parylene surface: a theoretical and experimental study[J].Chinese Journal of Vacuum Science and Technology, 2019, 39(8): 672-677. (in Chinese)doi:10.13922/j.cnki.cjovst.2019.08.09 [10] 王大振, 彭润玲, 陈家璧, 等. 双液体变焦透镜变焦迟滞现象的研究[J]. 光学学报,2011,31(6):94-98.WANG D ZH, PENG R L, CHEN J B,et al. Variable-focus hysteresis of double-liquid variable-focus lens[J].Acta Optica Sinica, 2011, 31(6): 94-98. (in Chinese) [11] SONG X M, ZHANG H X, LI D Y,et al. Electrowetting lens with large aperture and focal length tunability[J].Scientific Reports, 2020, 10(1): 16318.doi:10.1038/s41598-020-73260-4 [12] ZHAO P P, LI Y, ZAPPE H. Accelerated electrowetting-based tunable fluidic lenses[J].Optics Express, 2021, 29(10): 15733-15746.doi:10.1364/OE.423460 [13] 徐荣青, 孔梅梅, 张宏超, 等. 减少电润湿液体透镜变焦时间的实验研究[J]. 光学学报,2020,40(13):1322003.doi:10.3788/AOS202040.1322003XU R Q, KONG M M, ZHANG H CH,et al. Experimental research on reducing zoom time of electrowetting liquid lenses[J].Acta Optica Sinica, 2020, 40(13): 1322003. (in Chinese)doi:10.3788/AOS202040.1322003 [14] SONG X M, ZHANG H X, ZHANG Z L,et al. Design and characteristics of a Maxwell force-driven liquid lens[J].Optics Express, 2021, 29(6): 8323-8332.doi:10.1364/OE.418630 [15] LIM W Y, SUPEKAR O D, ZOHRABI M,et al. Liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics[J].Langmuir, 2018, 34(48): 14511-14518.doi:10.1021/acs.langmuir.8b02849 [16] 刘政, 周俊荣, 何灵, 等. 采用正交实验和综合评价法的机床立柱优化设计[J]. 机械工程师,2022(2):69-72,75.doi:10.3969/j.issn.1002-2333.2022.2.jxgcs202202023LIU ZH, ZHOU J R, HE L,et al. Optimization design of machine tool column using orthogonal experiment and fuzzy comprehensive evaluation method[J].Mechanical Engineer, 2022(2): 69-72,75. (in Chinese)doi:10.3969/j.issn.1002-2333.2022.2.jxgcs202202023 [17] 宋海润, 王晓蕾, 周树道, 等. 基于正交实验的七孔探针结构优化设计[J]. 传感器与微系统,2022,41(3):76-78,82.SONG H R, WANG X L, ZHOU SH D,et al. Structure optimization design of seven-hole probe based on orthogonal experiment[J].Transducer and Microsystem Technologies, 2022, 41(3): 76-78,82. (in Chinese) [18] 王鑫, 赵悠然, 徐近博, 等. 基于电润湿效应驱动的液体菲涅尔透镜[J]. 液晶与显示,2022,37(8):942-947.doi:10.37188/CJLCD.2022-0154WANG X, ZHAO Y R, XU J B,et al. Liquid Fresnel lens based on electrowetting effect drive[J].Chinese Journal of Liquid Crystals and Displays, 2022, 37(8): 942-947. (in Chinese)doi:10.37188/CJLCD.2022-0154 [19] 郭媛媛, 蒋洪伟, 袁冬, 等. 电润湿显示材料与器件技术研究进展[J]. 液晶与显示,2022,37(8):925-941.doi:10.37188/CJLCD.2022-0165GUO Y Y, JIANG H W, YUAN D,et al. Progress in electrowetting display materials and device technology[J].Chinese Journal of Liquid Crystals and Displays, 2022, 37(8): 925-941. (in Chinese)doi:10.37188/CJLCD.2022-0165 [20] 任晓飞, 魏长智, 刘飞飞, 等. 介电润湿驱动的变焦液体透镜电动力学分析[J]. 哈尔滨工业大学学报,2019,51(10):61-67.doi:10.11918/j.issn.0367-6234.201807068REN X F, WEI CH ZH, LIU F F,et al. Electrodynamic study of variable-focus liquid lens driven by electrowetting on dielectric[J].Journal of Harbin Institute of Technology, 2019, 51(10): 61-67. (in Chinese)doi:10.11918/j.issn.0367-6234.201807068 [21] 唐彪, 赵青, 周敏, 等. 电润湿动力学描述及其非稳态研究进展[J]. 华南师范大学学报(自然科学版),2016,48(1):35-41.TANG B, ZHAO Q, ZHOU M,et al. Research progress in electrowetting dynamics and its instability[J].Journal of South China Normal University(Natural Science Edition), 2016, 48(1): 35-41. (in Chinese) [22] 宋秀萍. 液固组合透镜变焦范围的研究[D]. 北京: 北京理工大学, 2016.SONG X P. Study of the zoom of solid-liquid composite lens[D]. Beijing: Beijing Institute of Technology, 2016. (in Chinese) [23] PENG R L, CHEN J B, ZHUANG S L. Electrowetting-actuated zoom lens with spherical-interface liquid lenses[J].Journal of the Optical Society of America A, 2008, 25(11): 2644-2650.doi:10.1364/JOSAA.25.002644