留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-performance transparent all-carbon photodetectors based on the semiconducting single-walled carbon nanotube/fullerene heterojunctions

ZHANG Luo-xi YIN Huan CHEN Yue ZHU Ming-kui SU Yan-jie

张罗茜, 尹欢, 陈越, 朱明奎, 苏言杰. 基于半导体性单壁碳纳米管/富勒烯异质结的高性能透明全碳光电探测器[J]. , 2023, 16(5): 1243-1256. doi: 10.37188/CO.2022-0243
引用本文: 张罗茜, 尹欢, 陈越, 朱明奎, 苏言杰. 基于半导体性单壁碳纳米管/富勒烯异质结的高性能透明全碳光电探测器[J]. , 2023, 16(5): 1243-1256. doi: 10.37188/CO.2022-0243
ZHANG Luo-xi, YIN Huan, CHEN Yue, ZHU Ming-kui, SU Yan-jie. High-performance transparent all-carbon photodetectors based on the semiconducting single-walled carbon nanotube/fullerene heterojunctions[J]. Chinese Optics, 2023, 16(5): 1243-1256. doi: 10.37188/CO.2022-0243
Citation: ZHANG Luo-xi, YIN Huan, CHEN Yue, ZHU Ming-kui, SU Yan-jie. High-performance transparent all-carbon photodetectors based on the semiconducting single-walled carbon nanotube/fullerene heterojunctions[J]. Chinese Optics, 2023, 16(5): 1243-1256. doi: 10.37188/CO.2022-0243

基于半导体性单壁碳纳米管/富勒烯异质结的高性能透明全碳光电探测器

详细信息
  • 中图分类号: TN15

High-performance transparent all-carbon photodetectors based on the semiconducting single-walled carbon nanotube/fullerene heterojunctions

doi: 10.37188/CO.2022-0243
Funds: Supported by the National Natural Science Foundation of China (No. 61974089)
More Information
    Author Bio:

    ZHANG Luo-xi (1997—), female, from Anyang, Henan Province, master degree, graduated fromJilin University with a bachelor degree in 2016, and obtained a master degreefrom Shanghai Jiaotong University in 2023, mainly engaged in the research of carbonnanotubes, optoelectronic devices and other fields. E-mail: luoxi-zhang@sjtu.edu.cn

    SU Yan-jie (1982—), male, from Shangqiu, Henan Province, Ph.D., associate researcher/doctoral supervisor, obtained his Ph.D. from Shanghai Jiaotong University in 2012, mainly engaged in the research of nanomaterials and devices. E-mail: yanjiesu@sjtu.edu.cn

    Corresponding author: yanjiesu@sjtu.edu.cn
  • 摘要:

    利用半导体性单壁碳纳米管(SWCNT)的高吸收系数、优异的光电特性和高载流子迁移率等特点,本文构筑了基于半导体SWCNT(sc-SWCNT)/富勒烯(C60)异质结的透明全碳宽光谱的场效应晶体管光电探测器。该器件的大部分结构均由碳基材料组成,全碳异质结作为导电沟道材料,金属性SWCNT作为源漏电极,氧化石墨烯(GO)作为介质层,在可见光波段的透光率均高于80%。电学测试结果表明:该光电探测器表现出了较强的栅控能力,实现了从405~1064 nm的可见光-近红外宽光谱响应,在5 mW/cm2的940 nm 照射下,该器件光电响应率可以达到18.55 A/W,比探测率达到5.35×1011 Jones,同时,表现出了优异的循环稳定性。

     

  • 图 1  (a)器件结构示意图和(b)器件在可见光波段的透射率

    Figure 1.  (a) Schematic diagram of the device structure. (b) Transmittance of the device in visible band

    图 2  (a)旋涂法沉积的sc-SWCNT薄膜、(b) sc-SWCNT/C60异质结复合薄膜和(c)金属性SWCNT薄膜的扫描电子显微镜图

    Figure 2.  Scanning electron microscope images of (a) sc-SWCNT film deposited by spin coating, (b) sc-SWCNT/C60 heterogeneous composite film and (c) m-SWCNT film

    图 3  sc-SWCNT/C60薄膜的拉曼统计分析。在514 nm 辐照下(a) sc-SWCNT (黑色)和(b) sc-SWCNT/C60 (蓝色)的拉曼光谱

    Figure 3.  Raman statistical analysis of sc-SWCNT /C60 film. Raman spectra of (a) sc-SWCNT (black) and (b) sc-SWCNT /C60 (blue) under 514 nm laser irradiation

    图 4  全碳器件的(a)Ids-Vgs曲线和(b)Ids-Vds曲线

    Figure 4.  (a) Ids-Vgs curve and (b) Ids-Vds curve of the all-carbon device

    图 5  全碳异质结器件在不同波长(405, 514, 650, 780, 860, 940, 1064 nm) 照射下的(a) Ids-Vds 和(b) Ids-T曲线

    Figure 5.  (a) Ids-Vds curve and (b) Ids-T curve of the all-carbon device under 405, 514, 650, 780, 860, 940, 1064 nm laser irradiation

    Baidu
  • [1] Richter M, T Heumüller, Matt G J, et al. Carbon photodetectors: The versatility of carbon allotropes[J]. Advanced Energy Materials, 2016, 7(10): 1601574.
    [2] Murata T, Asahi S, Sanguinetti S, et al. Infrared photodetector sensitized by InAs quantum dots embedded near an Al0.3Ga0.7As/GaAs heterointerface[J]. Scientific Reports, 2020, 10(1): 1-11. doi: 10.1038/s41598-019-56847-4
    [3] Xing J, Zhao K, Lu H B, et al. Visible-blind, ultraviolet-sensitive photodetector based on SrTiO3 single crystal[J]. Optics Letters, 2007, 32(17): 2526-2528. doi: 10.1364/OL.32.002526
    [4] Hirsch A. The era of carbon allotropes[J]. Nature Materials, 2010, 9: 868-871. doi: 10.1038/nmat2885
    [5] Dinadayalane T C, Leszczynski J. Remarkable diversity of carbon–carbon bonds: structures and properties of fullerenes, carbon nanotubes, and graphene[J]. Structural Chemistry, 2010, 21(6): 1155-1169. doi: 10.1007/s11224-010-9670-2
    [6] Premkumar T, Mezzenga R, Geckeler K E. Carbon nanotubes in the liquid phase: Addressing the issue of dispersion[J]. Small, 2012, 8(9): 1299-1313. doi: 10.1002/smll.201101786
    [7] Cai B F, Yin H, Huo T T, et al. Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors[J]. Journal of Materials Chemistry C, 2020, 8(10): 3386-3394. doi: 10.1039/C9TC06586E
    [8] Huo T T, Yin H, Zhou D Y, et al. Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions[J]. ACS Sustainable Chemistry &Engineering, 2020, 8(41): 15532-15539.
    [9] Ramuz M P, Vosgueritchian M, Wei P, et al. Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells[J]. ACS Nano, 2012, 6(11): 10384-10395. doi: 10.1021/nn304410w
    [10] Baughman R H, Zakhidov A A, Heer W. Carbon nanotubes-The route toward applications[J]. Science, 2002, 297(5582): 787-792. doi: 10.1126/science.1060928
    [11] Schnorr J M, Swager T M. Emerging applications of carbon nanotubes[J]. Chemistry of Materials, 2011, 23(3): 646-657. doi: 10.1021/cm102406h
    [12] Chichak K S, Star A, Altoé M V P, et al. Single‐walled carbon nanotubes under the influence of dynamic coordination and supramolecular chemistry[J]. Small, 2005, 1(4): 452-461. doi: 10.1002/smll.200400070
    [13] D'Souza F, Chitta R, Sandanayaka A S D, et al. Supramolecular carbon nanotube-fullerene donor-acceptor hybrids for photoinduced electron transfer[J]. Journal of the American Chemical Society, 2007, 129(51): 15865-15871. doi: 10.1021/ja073773x
    [14] Long M, Wang P, Fang H, et al. Progress, challenges, and opportunities for 2D material-based photodetectors[J]. Advanced Functional Materials, 2019, 29(19): 1803807. doi: 10.1002/adfm.201803807
    [15] Zeng Q, Wang S, Yang L, et al. Carbon nanotube arrays based high-performance infrared photodetector[J]. Optical Materials Express, 2012, 2(6): 839-848. doi: 10.1364/OME.2.000839
    [16] Liu Y, Wei N, Zeng Q, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability[J]. Advanced Optical Materials, 2016, 4(2): 238-245. doi: 10.1002/adom.201500529
    [17] Saran R, Curry R J. Solution processable 1D fullerene C60 crystals for visible spectrum photodetectors[J]. Small, 2018, 14(11): 1703624. doi: 10.1002/smll.201703624
    [18] Yin H, Zhang L, Zhu M, et al. High-Performance Visible–Near-Infrared Single-Walled Carbon Nanotube Photodetectors via Interfacial Charge-Transfer-Induced Improvement by Surface Doping[J]. ACS Applied Materials &Interfaces, 2022, 14(38): 43628-43636.
    [19] Cheng S H, Weng T M, Lu M L, et al. All carbon-based photodetectors: an eminent integration of graphite quantum dots and two-dimensional graphene[J]. Scientific Reports, 2013, 3(1): 1-7.
    [20] Park S, Kim S J, Nam J H, et al. Significant Enhancement of Infrared Photodetector Sensitivity Using a Semiconducting Single‐Walled Carbon Nanotube/C60 Phototransistor[J]. Advanced materials, 2015, 27(4): 759-765. doi: 10.1002/adma.201404544
    [21] Yu X, Dong Z, Yang J K W, et al. Room-temperature mid-infrared photodetector in all-carbon graphene nanoribbon-C60 hybrid nanostructure[J]. Optica, 2016, 3(9): 979-984. doi: 10.1364/OPTICA.3.000979
    [22] Zhou Z, Ding Y, Ma H, et al. Bilayer nanocarbon heterojunction for full-solution processed flexible all-carbon visible photodetector[J]. APL Materials, 2019, 7(3): 031501. doi: 10.1063/1.5054774
    [23] Itkis M E, Borondics F, Yu A, et al. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films[J]. Science, 2006, 312(5772): 413-416. doi: 10.1126/science.1125695
    [24] Huo T, Zhang D, Shi X, et al. High-performance self-powered photodetectors based on the carbon nanomaterial/GaAs vdW heterojunctions[J]. Chinese Optics, 2022, 15(2): 373. (in Chinese)
    [25] Dresselhaus M S, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes[J]. Physics Reports, 2005, 409(2): 47-99. doi: 10.1016/j.physrep.2004.10.006
    [26] Farhat H, Son H, Samsonidze G G, et al. Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly[J]. Physical Review Letters, 2007, 99(14): 145506. doi: 10.1103/PhysRevLett.99.145506
    [27] Das A, Sood A K, Govindaraj A, et al. Doping in carbon nanotubes probed by Raman and transport measurements[J]. Physical Review Letters, 2007, 99(13): 136803. doi: 10.1103/PhysRevLett.99.136803
    [28] Hatting B, Heeg S, Ataka K, et al. Fermi energy shift in deposited metallic nanotubes: A Raman scattering study[J]. Physical Review B, 2013, 87(16): 165442. doi: 10.1103/PhysRevB.87.165442
    [29] Wroblewska A, Gordeev G, Duzynska A, et al. Doping and plasmonic Raman enhancement in hybrid single walled carbon nanotubes films with embedded gold nanoparticles[J]. Carbon, 2021, 179: 531-540. doi: 10.1016/j.carbon.2021.04.079
    [30] Wang F, Dukovic G, Brus L E, et al. The optical resonances in carbon nanotubes arise from excitons[J]. Science, 2005, 308(5723): 838-841. doi: 10.1126/science.1110265
    [31] Maciel I O, Anderson N, Pimenta M A, et al. Electron and phonon renormalization near charged defects in carbon nanotubes[J]. Nature Materials, 2008, 7(11): 878-883. doi: 10.1038/nmat2296
    [32] Das A, Sood A K. Renormalization of the phonon spectrum in semiconducting single-walled carbon nanotubes studied by Raman spectroscopy[J]. Physical Review B, 2009, 79(23): 235429. doi: 10.1103/PhysRevB.79.235429
  • 加载中
图(5)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  131
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-24
  • 修回日期:  2022-12-12
  • 网络出版日期:  2023-04-04

目录

    /

    返回文章
    返回
    Baidu
    map