-
摘要:
光程吸收光谱技术是吸收光谱技术发展中的一个重要分支,近年来基于不同光源技术、吸收腔技术、探测方式的光程吸收光谱技术大量涌现。随着对探测灵敏度和吸收光程长度需求的提高,出现了基于增强吸收原理的光程吸收光谱技术,包括:积分腔光谱(ICOS)、腔增强吸收光谱(CEAS)和腔衰荡光谱(CRDS)。增强吸收光谱技术具有高光谱分辨率、高灵敏度、快速响应、便携等优势,但至今缺乏统一的概念和明确的分类依据。本文梳理了吸收光谱技术的发展历程,明确了多光程吸收光谱技术的概念。依据吸收腔内是否发生谐振吸收,提出了基于谐振原理的吸收光谱技术这一概念,分析总结了谐振吸收光谱技术的研究现状,并对这些技术在各领域的应用进行概述。最后,对谐振吸收光谱技术中关键技术的未来发展进行了展望。
Abstract:Optical path absorption spectroscopy is an important branch of absorption spectroscopy. In recent years, there has been a proliferation of optical path absorption spectroscopy techniques based on different light source technologies, absorption cavity technologies, and detection methods. As the demands on detection sensitivity and absorption optical path length increased, optical path absorption spectroscopy techniques based on the principle of enhanced absorption emerged, including integrated cavity spectroscopy (ICOS), cavity-enhanced absorption spectroscopy (CEAS) and cavity ring-down spectroscopy (CRDS). Enhanced absorption spectroscopy is advantageous for its high spectral resolution, high sensitivity, fast response time, and portability, but it presently lacks a unified concept and clear classification criteria. This paper compares the development history of absorption spectroscopy techniques and clarifies the concept of their multi-optical path. Based on whether resonant absorption occurs in the absorption cavity, the concept of absorption spectroscopy techniques based on resonance is proposed, and the current research status of resonant absorption spectroscopy techniques is analyzed and summarized, and the applications of this technique in various fields are outlined. Finally, the future development of key technologies in resonance absorption spectroscopy is envisioned.
-
图 3 不同光程吸收光谱技术的吸收光程长度。非分散红外(NDIR)、差分吸收光谱(DOAS)、可调谐半导体 吸收光谱(TDLAS)、积分腔光谱(ICOS )、离轴积分腔输出光谱(OA-ICOS)、宽带腔增强吸收光谱(BB-CEAS)、离轴腔增强吸收光谱(OF-CEAS)、腔衰荡光谱(CRDS)
Figure 3. Absorption optical paths length in different optical path absorption spectroscopy technologies: non-dispersive (NDIR), differential optical absorption spectroscopy (DOAS), tunable diode laser absorption spectroscopy (TDLAS), integrated cavity output spectroscopy (ICOS), off-axis ICOS (OA-ICOS), broadband cavity-enhanced absorption spectroscopy (BB-CEAS), optical feedback CEAS (OF-CEAS), and cavity ring-down spectroscopy (CRDS)
-
[1] 王琦, 王世超, 刘泰余, 等. 光声光谱多组分气体检测技术研究进展[J]. 光谱学与光谱分析,2022,42(1):1-8.WANG Q, WANG SH CH, LIU T Y, et al. Research progress of multi-component gas detection by photoacoustic spectroscopy[J]. Spectroscopy and Spectral Analysis, 2022, 42(1): 1-8. (in Chinese) [2] 马欲飞. 基于石英增强光声光谱的气体传感技术研究进展[J]. 物理学报,2021,70(16):160702. doi: 10.7498/aps.70.20210685MA Y F. Research progress of quartz-enhanced photoacoustic spectroscopy based gas sensing[J]. Acta Physica Sinica, 2021, 70(16): 160702. (in Chinese) doi: 10.7498/aps.70.20210685 [3] 李悦, 张国霞, 蔡朝晴, 等. 大气压辉光放电结合圆柱约束增强 诱导击穿光谱应用于土壤中稀土元素的检测[J]. 分析化学,2022,50(9):1384-1390.LI Y, ZHANG G X, CAI ZH Q, et al. Atmospheric pressure glow discharge combined with cylindrical confinement enhanced laser-induced breakdown spectroscopy for determination of rare earth in soil[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1384-1390. (in Chinese) [4] 刘崎, 汪磊, 朱向冰, 等. 基于非分散红外法的二氧化碳浓度检测综述[J]. 红外,2022,43(7):1-7. doi: 10.3969/j.issn.1672-8785.2022.07.001LIU Q, WANG L, ZHU X B, et al. Review of CO2 concentration detection based on non-dispersive infrared method[J]. Infrared, 2022, 43(7): 1-7. (in Chinese) doi: 10.3969/j.issn.1672-8785.2022.07.001 [5] PAN Y, LI Y, YAN CH X, et al. Improvement of concentration inversion model based on second harmonic valley spacing in wavelength modulation spectroscopy[J]. IEEE Access, 2020, 8: 227857-227865. doi: 10.1109/ACCESS.2020.3045587 [6] MURZYN C, SIMS A, KRIER H, et al. High speed temperature, pressure, and water vapor concentration measurement in explosive fireballs using tunable diode laser absorption spectroscopy[J]. Optics and Lasers in Engineering, 2018, 110: 186-192. doi: 10.1016/j.optlaseng.2018.06.005 [7] 曲艺. 大气光学遥感监测技术现状与发展趋势[J]. 中国光学,2013,6(6):834-840.QU Y. Technical status and development tendency of atmosphere optical remote and monitoring[J]. Chinese Optics, 2013, 6(6): 834-840. (in Chinese) [8] 金川, 蒋利桥, 李凡, 等. 正丁烷/空气射流火焰热释放率与火焰面厚度的平面 诱导荧光测试[J]. 中国 ,2022,49(13):1304001.JIN CH, JIANG L Q, LI F, et al. Technical status and development tendency of atmosphere optical remote and monitoring[J]. Chinese Journal of Lasers, 2022, 49(13): 1304001. (in Chinese) [9] 韩棒棒, 赵治月, 赵俊雨, 等. 基于 诱导荧光成像技术的截面含气率检测研究[J]. 仪器仪表学报,2021,42(10):2-8. doi: 10.19650/j.cnki.cjsi.J2107837HAN B B, ZHAO ZH Y, ZHAO J Y, et al. Study on the detection of void fraction based on laser-induced fluorescence imaging technology[J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 2-8. (in Chinese) doi: 10.19650/j.cnki.cjsi.J2107837 [10] 李聪, 杨金传, 王凯强, 等. 大气压微波等离子体发射光谱法检测磷、氯类毒剂模拟剂[J]. 分析化学,2022,50(9):1425-1434.LI C, YANG J CH, WANG K Q, et al. Detection of toxic simulant phosphorus and chlorine by atmospheric pressure microwave plasma optical emission spectrometry[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1425-1434. (in Chinese) [11] ALDÉN M, BOOD J, LI ZH SH, et al. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques[J]. Proceedings of the Combustion Institute, 2011, 33(1): 69-97. doi: 10.1016/j.proci.2010.09.004 [12] 李颖超, 李春生, 王宏霞, 等. 基于数字微镜的电感耦合等离子体发射光谱检测技术研究[J]. 分析化学,2022,50(8):1150-1157.LI Y Q, LI CH SH, WANG H X, et al. Research on detection technology of inductively coupled plasma optical emission spectrometer based on digital micromirror device[J]. Chinese Journal of Analytical Chemistry, 2022, 50(8): 1150-1157. (in Chinese) [13] 孙柳雅, 牛明生, 陈加雪, 等. 基于光声光谱技术的NO2探测[J]. 中国 ,2022,49(23):2310002.SUN L Y, NIU M SH, CHEN J X, et al. Nitrogen dioxide detection based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 2022, 49(23): 2310002. (in Chinese) [14] SCHARF T, BRIAND D, BÜHLER S, et al. Miniaturized Fourier transform spectrometer for gas detection in the MIR region[J]. Sensors and Actuators B:Chemical, 2010, 147(1): 116-121. doi: 10.1016/j.snb.2010.03.050 [15] 段拼搏, 王一红, 周宾, 等. 吸收光谱技术噪声响应特性数值模拟研究[J]. 应用 ,2022,42(6):132-136.DUAN P B, WANG Y H, ZHOU B, et al. Numerical simulation research on noise response characteristics of laser absorption spectroscopy technology[J]. Applied Laser, 2022, 42(6): 132-136. (in Chinese) [16] SHAO L G, FANG B, ZHENG F, et al. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 μm DFB laser[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 222: 117118. doi: 10.1016/j.saa.2019.05.023 [17] 信丰鑫, 郭金家, 李杰, 等. 可调谐半导体 吸收光谱技术对CO2浓度的测量研究[J]. 中国海洋大学学报,2020,50(8):137-142.XIN F X, GUO J J, LI J, et al. Measurement of CO2 concentration by tunable diode laser absorption spectroscopy[J]. Periodical of Ocean University of China, 2020, 50(8): 137-142. (in Chinese) [18] 李金义, 李连辉, 赵烁, 等. 可调谐半导体 吸收光谱技术在石油工业中的应用研究[J]. 与光电子学进展,2022,59(13):1300006.LI J Y, LI L H, ZHAO SH, et al. Application research of tunable diode laser absorption spectroscopy in petroleum industry[J]. Laser &Optoelectronics Progress, 2022, 59(13): 1300006. (in Chinese) [19] 李金义, 孙福双, 张宸阁, 等. 调谐 吸收光谱技术在燃煤电厂中的应用及展望[J]. 杂志,2020,41(4):8-17. doi: 10.14016/j.cnki.jgzz.2020.04.008LI J Y, SUN F SH, ZHANG CH G, et al. Application and prospect of tunable laser absorption spectroscopy in coal-fired power plants[J]. Laser Journal, 2020, 41(4): 8-17. (in Chinese) doi: 10.14016/j.cnki.jgzz.2020.04.008 [20] 阙华礼, 杨文亮, 信秀丽, 等. 基于 吸收光谱技术的农田氨挥发研究[J]. 光谱学与光谱分析,2020,40(3):885-890.QUE H L, YANG W L, XIN X L, et al. Ammonia volatilization from farmland measured by laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 885-890. (in Chinese) [21] 张超. 单原子催化剂电催化还原二氧化碳研究进展[J]. 应用化学,2022,39(6):871-887.ZHANG C H. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide[J]. CHINESE JOURNAL OF APPLIED CHEMISTRY, 2022, 39(6): 871-887. (in Chinese) [22] 袁志国, 马修真, 刘晓楠, 等. 利用可调谐 吸收光谱技术的柴油机排放温度测试研究[J]. 中国光学,2020,13(2):281-289. doi: 10.3788/co.20201302.0281YUAN ZH G, MA X ZH, LIU X N, et al. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J]. Chinese Optics, 2020, 13(2): 281-289. (in Chinese) doi: 10.3788/co.20201302.0281 [23] WANG C J, SAHAY P. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits[J]. Sensors, 2009, 9(10): 8230-8262. doi: 10.3390/s91008230 [24] 李恒宽, 朴亨, 王鹏, 等. 基于近红外吸收光谱技术的高精度CO2检测系统的研制[J]. 红外与 工程,2023,52(3):20210828.LI H K, PIAO H, WANG P, et al. Development of high precision CO2 detection system based on near infrared absorption spectroscopy[J]. Infrared and Laser Engineering, 2023, 52(3): 20210828. (in Chinese) [25] SCHILT S, THÉVENAZ L, ROBERT P. Wavelength modulation spectroscopy: combined frequency and intensity laser modulation[J]. Applied Optics, 2003, 42(33): 6728-6738. doi: 10.1364/AO.42.006728 [26] SMITH J P, SOLOMON S. Atmospheric NO3 3. Sunrise disappearance and the stratospheric profile[J]. Journal of Geophysical Research, 1990, 95(D9): 13819-13827. doi: 10.1029/JD095iD09p13819 [27] 田鑫, 任博, 谢品华, 等. 多轴差分吸收光谱技术对冬季大气HONO垂直分布特征研究[J]. 光谱学与光谱分析,2022,42(7):2039-2046. doi: 10.3964/j.issn.1000-0593(2022)07-2039-08TIAN X, REN B, XIE P H, et al. Study on vertical distribution of atmospheric HONO in winter based on multi-axis differential absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2022, 42(7): 2039-2046. (in Chinese) doi: 10.3964/j.issn.1000-0593(2022)07-2039-08 [28] 王玉诏, 陶宇亮, 孙海青, 等. 基于 掩星吸收光谱的二氧化碳探测技术[J]. 中国光学,2021,14(3):634-642. doi: 10.37188/CO.2020-0201WANG Y ZH, TAO Y L, SUN H Q, et al. Carbon dioxide detection technology based on the laser occultation absorption spectrum[J]. Chinese Optics, 2021, 14(3): 634-642. (in Chinese) doi: 10.37188/CO.2020-0201 [29] 郑海明, 朱小朋, 冯帅帅, 等. 基于差分吸收光谱技术监测苯-甲苯-二甲苯的实验研究[J]. 光谱学与光谱分析,2021,41(2):467-472.ZHENG H M, ZHU X P, FENG SH SH, et al. Experimental research on monitoring of BTX concentration based on differential optical absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(2): 467-472. (in Chinese) [30] 王章军, 郝菁, 宋晨光, 等. 基于差分光学吸收光谱技术的交通主干道污染气体监测[J]. 与光电子学进展,2020,57(9):093003.WANG ZH J, HAO J, SONG CH G, et al. Traffic pollution gas monitoring based on differential optical absorption spectroscopy technology[J]. Laser &Optoelectronics Progress, 2020, 57(9): 093003. (in Chinese) [31] HÖNNINGER G, VON FRIEDEBURG C, PLATT U. Multi axis differential optical absorption spectroscopy (MAX-DOAS)[J]. Atmospheric Chemistry and Physics, 2004, 4(1): 231-254. doi: 10.5194/acp-4-231-2004 [32] WHITE J U. Long optical paths of large aperture[J]. Journal of the Optical Society of America, 1942, 32(5): 285-288. doi: 10.1364/JOSA.32.000285 [33] HERRIOTT D R, SCHULTE H J. Folded optical delay lines[J]. Applied Optics, 1965, 4(8): 883-889. doi: 10.1364/AO.4.000883 [34] 许棕, 曹亚南, 张荣荣, 等. 用于 吸收光谱技术的新型平面镜光学多通池的设计与分析[J]. 量子电子学报,2021,38(4):405-411.XU Z, CAO Y N, ZHANG R R, et al. Design and analysis of a novel multipass cell based on two plane mirrors for laser absorption spectroscopy[J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 405-411. (in Chinese) [35] PAUL J B, LAPSON L, ANDERSON J G. Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment[J]. Applied Optics, 2001, 40(27): 4904-4910. doi: 10.1364/AO.40.004904 [36] ZYBIN A, KURITSYN Y A, MIRONENKO V R, et al. Cavity enhanced wavelength modulation spectrometry for application in chemical analysis[J]. Applied Physics B:Lasers and Optics, 2004, 78(1): 103-109. doi: 10.1007/s00340-003-1342-0 [37] ENGEL G S, DRISDELL W S, KEUTSCH F N, et al. Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 µm: new sensitivity limits for absorption measurements in passive optical cavities[J]. Applied Optics, 2006, 45(36): 9221-9229. doi: 10.1364/AO.45.009221 [38] 张海鹏, 郑凯元, 李俊豪, 等. 离轴积分腔输出光谱气体传感降噪技术[J]. 光学学报,2021,41(24):2430002.ZHANG H P, ZHENG K Y, LI J H, et al. Denoising technique in gas sensing based on off-axis integrated cavity output spectroscopy[J]. Acta Optica Sinica, 2021, 41(24): 2430002. (in Chinese) [39] ZHAO W, GAO X, CHEN W, et al. Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared[J]. Applied Physics B, 2007, 86(2): 353-359. doi: 10.1007/s00340-006-2451-3 [40] 李俊豪, 郑凯元, 席振海, 等. 基于开放光路离轴积分腔的甲烷传感技术与实验[J]. 中国 ,2021,48(16):1610002. doi: 10.3788/CJL202148.1610002LI J H, ZHENG K Y, XI ZH H, et al. Open-path off-axis integrated cavity-based methane sensing technique and experiment[J]. Chinese Journal of Lasers, 2021, 48(16): 1610002. (in Chinese) doi: 10.3788/CJL202148.1610002 [41] 张国贤, 胡仁志, 谢品华, 等. 基于离轴积分腔输出光谱对泰州大气NH3浓度观测与分析[J]. 光谱学与光谱分析,2021,41(2):360-367.ZHANG G X, HU R ZH, XIE P H, et al. Observation and analysis of Taizhou atmosphere NH3 concentration by off-axis integrated cavity output spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(2): 360-367. (in Chinese) [42] 董洋, 王静静, 周心禺, 等. 基于离轴积分腔输出光谱的深海可燃冰探测技术[J]. 中国 ,2020,47(8):0811003. doi: 10.3788/CJL202047.0811003DONG Y, WANG J J, ZHOU X Y, et al. Detection of methane hydrate in deep sea based on off-axis integrated cavity output spectroscopy[J]. Chinese Journal of Lasers, 2020, 47(8): 0811003. (in Chinese) doi: 10.3788/CJL202047.0811003 [43] GIANFRANI L, FOX R W, HOLLBERG L. Cavity-enhanced absorption spectroscopy of molecular oxygen[J]. Journal of the Optical Society of America B, 1999, 16(12): 2247-2254. doi: 10.1364/JOSAB.16.002247 [44] ENGELN R, BERDEN G, PEETERS R, et al. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy[J]. Review of Scientific Instruments, 1998, 69(11): 3763-3769. doi: 10.1063/1.1149176 [45] FIEDLER S E, HESE A, RUTH A A. Incoherent broad-band cavity-enhanced absorption spectroscopy[J]. Chemical Physics Letters, 2003, 371(3-4): 284-294. doi: 10.1016/S0009-2614(03)00263-X [46] 陈东阳, 周力, 杨复沫, 等. 腔增强吸收光谱技术在大气环境研究中的应用进展[J]. 光谱学与光谱分析,2021,41(9):2688-2695.CHEN D Y, ZHOU L, YANG F M, et al. Application progress of cavity-enhanced absorption spectroscopy (CEAS) in atmospheric environment research[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2688-2695. (in Chinese) [47] 段俊, 唐科, 秦敏, 王丹, 等. 宽带腔增强吸收光谱技术应用于大气NO3自由基的测量[J]. 物理学报,2021,70(1):010702. doi: 10.7498/aps.70.20201066DUAN J, TANG K, QIN M, et al. Broadband cavity enhanced absorption spectroscopy for measuring atmospheric NO3 radical[J]. Acta Physica Sinica, 2021, 70(1): 010702. (in Chinese) doi: 10.7498/aps.70.20201066 [48] BALL S M, LANGRIDGE J M, JONES R L. Broadband cavity enhanced absorption spectroscopy using light emitting diodes[J]. Chemical Physics Letters, 2004, 398(1-3): 68-74. doi: 10.1016/j.cplett.2004.08.144 [49] 张鹤露, 秦敏, 方武, 等. 基于非相干宽带腔增强吸收光谱技术对碘氧自由基的定量研究[J]. 物理学报,2021,70(15):150702. doi: 10.7498/aps.70.20210312ZHANG H L, QIN M, FANG W, et al. Quantification of iodine monoxide based on incoherent broadband cavity enhanced absorption spectroscopy[J]. Acta Physica Sinica, 2021, 70(15): 150702. (in Chinese) doi: 10.7498/aps.70.20210312 [50] WASHENFELDER R A, ATTWOOD A R, FLORES J M, et al. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde[J]. Atmospheric Measurement Techniques, 2016, 9(1): 41-52. doi: 10.5194/amt-9-41-2016 [51] LANGRIDGE J M, LAURILA T, WATT R S. Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source[J]. Optics Express, 2008, 16(14): 10178-10188. doi: 10.1364/OE.16.010178 [52] HULT J, WATT R S, KAMINSKI C F. High bandwidth absorption spectroscopy with a dispersed supercontinuum source[J]. Optics Express, 2007, 15(18): 11385-11395. doi: 10.1364/OE.15.011385 [53] LANGRIDGE J M, BALL S M, JONES R L. A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes[J]. Analyst, 2006, 131(8): 916-922. doi: 10.1039/b605636a [54] LAURILA T, BURNS I S, HULT J, et al. A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation[J]. Applied Physics B, 2011, 102(2): 271-278. [55] 韩荦, 夏滑, 董凤忠, 等. 腔增强吸收光谱技术研究进展及其应用[J]. 中国 ,2018,45(9):0911003. doi: 10.3788/CJL201845.0911003HAN L, XIA H, DONG F ZH, et al. Progress and application of cavity enhanced absorption spectroscopy technology[J]. Chinese Journal of Lasers, 2018, 45(9): 0911003. (in Chinese) doi: 10.3788/CJL201845.0911003 [56] MALARA P, MADDALONI P, GAGLIARDI G, et al. Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 μm[J]. Optics Express, 2006, 14(3): 1304-1313. doi: 10.1364/OE.14.001304 [57] KARPF A, RAO G N. Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy[J]. Applied Optics, 2009, 48(27): 5061-5066. doi: 10.1364/AO.48.005061 [58] WOJTAS J, MEDRZYCKI R, RUTECKA B, et al. NO and N2O detection employing cavity enhanced technique[J]. Proceedings of SPIE, 2012, 8374: 837414. doi: 10.1117/12.919240 [59] KASYUTICH V L, MARTIN P A, HOLDSWORTH R J. Phase-shift off-axis cavity-enhanced absorption detector of nitrogen dioxide[J]. Measurement Science and Technology, 2006, 17(4): 923-931. doi: 10.1088/0957-0233/17/4/044 [60] DREVER R W P, HALL J L, KOWALSKI F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105. [61] ROMANINI D, KACHANOV A A, MORVILLE J, et al. Measurement of trace gases by diode laser cavity ringdown spectroscopy[J]. Proceedings of SPIE, 1999, 3821: 94-104. doi: 10.1117/12.364170 [62] 程桐, 杨天悦, 宫廷, 等. 光学反馈腔增强吸收光谱技术中干涉抑制方法[J]. 物理学报,2022,71(6):064205. doi: 10.7498/aps.71.20211882CHENG T, YANG T Y, GONG T, et al. Interference suppression method in optical feedback-cavity enhanced absorption spectroscopy technology[J]. Acta Physica Sinica, 2022, 71(6): 064205. (in Chinese) doi: 10.7498/aps.71.20211882 [63] 许非, 周晓彬, 刘政波, 等. 近红外光学反馈线性腔增强吸收光谱技术[J]. 光学 精密工程,2021,29(5):933-939. doi: 10.37188/OPE.2020.0657XU F, ZHOU X B, LIU ZH B, et al. Near-infrared optical-feedback linear cavity-enhanced absorption spectroscopy[J]. Optics and Precision Engineering, 2021, 29(5): 933-939. (in Chinese) doi: 10.37188/OPE.2020.0657 [64] BERGIN A G V, HANCOCK G, RITCHIE G A D, et al. Linear cavity optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser[J]. Optics Letters, 2013, 38(14): 2475-2477. doi: 10.1364/OL.38.002475 [65] LANG N, MACHERIUS U, WIESE M, et al. Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy[J]. Optics Express, 2016, 24(6): A536-A543. doi: 10.1364/OE.24.00A536 [66] LANDSBERG J, ROMANINI D, KERSTEL E. Very high finesse optical-feedback cavity-enhanced absorption spectrometer for low concentration water vapor isotope analyses[J]. Optics Letters, 2014, 39(7): 1795-1798. doi: 10.1364/OL.39.001795 [67] HAMILTON D J, ORR-EWING A J. A quantum cascade laser-based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air[J]. Applied Physics B, 2011, 102(4): 879-890. doi: 10.1007/s00340-010-4259-4 [68] 徐毓阳, 余锦, 貊泽强, 等. 腔衰荡吸收光谱技术的研究进展及典型应用[J]. 与光电子学进展,2021,58(19):1900001.XU Y Y, YU J, MO Z Q, et al. Advances in cavity ring-down absorption spectroscopy research and typical applications[J]. Laser &Optoelectronics Progress, 2021, 58(19): 1900001. (in Chinese) [69] CROSSON E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor[J]. Applied Physics B, 2008, 92(3): 403-408. doi: 10.1007/s00340-008-3135-y [70] KASYUTICH V L, POULIDI D, JALIL M, et al. Application of a cw quantum cascade laser CO2 analyser to catalytic oxidation reaction monitoring[J]. Applied Physics B, 2013, 110(2): 263-269. doi: 10.1007/s00340-012-5154-y [71] O’KEEFE A, DEACON A G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J]. Review of Scientific Instruments, 1998, 59(12): 2544-2551. [72] ROMANINI D, KACHANOV A A, STOECKEL F. Diode laser cavity ring down spectroscopy[J]. Chemical Physics Letters, 1997, 270(5-6): 538-545. doi: 10.1016/S0009-2614(97)00406-5 [73] BALL S M, POVEY I M, NORTON E G, et al. Broadband cavity ringdown spectroscopy of the NO3 radical[J]. Chemical Physics Letters, 2001, 342(1-2): 113-120. doi: 10.1016/S0009-2614(01)00573-5 [74] 李哲, 张志荣, 夏滑, 等. 连续波腔衰荡吸收光谱技术中的模式匹配研究[J]. 中国 ,2022,49(4):0411001.LI ZH, ZHANG ZH R, XIA H, et al. Mode matching in continuous-wave cavity ring-down absorption spectroscopy[J]. Chinese Journal of Lasers, 2022, 49(4): 0411001. (in Chinese) [75] 马国盛, 刘英, 邓昊, 等. 高精细度光学反馈腔衰荡光谱技术[J]. 光学 精密工程,2022,30(19):2305-2312. doi: 10.37188/OPE.20223019.2305MA G SH, LIU Y, DENG H, et al. High finesse optical feedback cavity ringdown spectroscopy[J]. Optics and Precision Engineering, 2022, 30(19): 2305-2312. (in Chinese) doi: 10.37188/OPE.20223019.2305 [76] 王兴平, 赵刚, 焦康, 等. 光学反馈线性腔衰荡光谱技术不确定性[J]. 物理学报,2022,71(12):124201. doi: 10.7498/aps.70.20220186WANG X P, ZHAO G, JIAO K, et al. Uncertainty of optical feedback linear cavity ringdown spectroscopy[J]. Acta Physica Sinica, 2022, 71(12): 124201. (in Chinese) doi: 10.7498/aps.70.20220186 [77] 胡迈, 陈祥, 张辉, 等. 一次谐波锁频的快速光腔衰荡光谱检测[J]. 光学 精密工程,2022,30(4):363-371. doi: 10.37188/OPE.20223004.0363HU M, CHEN X, ZHANG H, et al. Fast optical cavity ring-down spectroscopy detection based on first harmonic frequency locking[J]. Optics and Precision Engineering, 2022, 30(4): 363-371. (in Chinese) doi: 10.37188/OPE.20223004.0363 [78] LEVENSON M D, PALDUS B A, SPENCE T G, et al. Optical heterodyne detection in cavity ring-down spectroscopy[J]. Chemical Physics Letters, 1998, 290(4-6): 335-340. doi: 10.1016/S0009-2614(98)00500-4 [79] MCHALE L E, HECOBIAN A, YALIN A P. Open-path cavity ring-down spectroscopy for trace gas measurements in ambient air[J]. Optics Express, 2016, 24(5): 5523-5535. doi: 10.1364/OE.24.005523 [80] 貊泽强, 余锦, 何建国, 等. 基于阈值调节的腔衰荡光谱检测量程扩展方法研究[J]. 中国 ,2020,47(8):0804001. doi: 10.3788/CJL202047.0804001MO Z Q, YU J, HE J G, et al. Method for measurement range extension of cavity ring-down spectroscopy based on threshold modification[J]. Chinese Journal of Lasers, 2020, 47(8): 0804001. (in Chinese) doi: 10.3788/CJL202047.0804001 [81] MO Z Q, YU J, WANG J D, et al. Current-modulated cavity ring-down spectroscopy for mobile monitoring of natural gas leaks[J]. Journal of Lightwave Technology, 2021, 39(12): 4020-4027. doi: 10.1109/JLT.2020.3003006 [82] 宋绍漫, 颜昌翔. 基于光腔衰荡光谱技术的痕量甲烷检测[J]. 光谱学与光谱分析,2020,40(7):2023-2028.SONG SH M, YAN CH X. Trace methane detection based on cavity ring-down spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 2023-2028. (in Chinese) [83] WANG J D, YU J, MO ZH Q, et al. Multicomponent gas detection based on concise CW-cavity ring-down spectroscopy with a bow-tie design[J]. Applied Optics, 2019, 58(11): 2773-2781. doi: 10.1364/AO.58.002773 [84] 董贺伟, 郭瑞民, 崔文超, 等. 基于折叠腔的光腔衰荡光谱技术研究[J]. 中国 ,2020,47(3):0311001. doi: 10.3788/CJL202047.0311001DONG H W, GUO R M, CUI W CH, et al. Cavity ring-down spectroscopy based on folded cavity[J]. Chinese Journal of Lasers, 2020, 47(3): 0311001. (in Chinese) doi: 10.3788/CJL202047.0311001 [85] ATHERTON K, STEWART G, YU H. Fiber optic intra-cavity spectroscopy: combined ring-down and ICLAS architectures using fiber lasers[J]. Proceedings of SPIE, 2001, 4204: 124-130. doi: 10.1117/12.417401 [86] GUPTA M, JIAO H, O’KEEFE A. Cavity-enhanced spectroscopy in optical fibers[J]. Optics Letters, 2002, 27(21): 1878-1880. doi: 10.1364/OL.27.001878 [87] TARSA P B, BRZOZOWSKI D M, RABINOWITZ P, et al. Cavity ringdown strain gauge[J]. Optics Letters, 2004, 29(12): 1339-1341. doi: 10.1364/OL.29.001339 [88] FLEISHER A J, ADKINS E M, REED Z D, et al. Twenty-five-fold reduction in measurement uncertainty for a molecular line intensity[J]. Physical Review Letters, 2019, 123(4): 043001. doi: 10.1103/PhysRevLett.123.043001 [89] 黄杰涛, 王大鹏. 共轭聚合物在溶液中吸收峰红移的物理根源解析[J]. 应用化学,2021,38(11):1486-1493.HUANC J T, WANC D P. Analysis of the Physical Origin of the Red-Shift of Absorption Peaks of Conjugated Polymers in Solution[J]. CHINESE JOURNAL OF APPLIED CHEMISTRY, 2021, 38(11): 1486-1493. (in Chinese) [90] GHYSELS M, LIU Q N, FLEISHER A J, et al. A variable-temperature cavity ring-down spectrometer with application to line shape analysis of CO2 spectra in the 1600 nm region[J]. Applied Physics B, 2017, 123(4): 124. doi: 10.1007/s00340-017-6686-y [91] LONG D A, FLEISHER A J, LIU Q, et al. Ultra-sensitive cavity ring-down spectroscopy in the mid-infrared spectral region[J]. Optics Letters, 2016, 41(7): 1612-1615. doi: 10.1364/OL.41.001612 [92] LIANG SH X, QIN M, XIE P H, et al. Development of an incoherent broadband cavity-enhanced absorption spectrometer for measurements of ambient glyoxal and NO2 in a polluted urban environment[J]. Atmospheric Measurement Techniques, 2019, 12(4): 2499-2512. doi: 10.5194/amt-12-2499-2019 [93] 梁帅西, 秦敏, 段俊, 等. 机载腔增强吸收光谱系统应用于大气NO2空间高时间分辨率测量[J]. 物理学报,2017,66(9):090704. doi: 10.7498/aps.66.090704LIANG SH X, QIN M, DUAN J, et al. Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2[J]. Acta Physica Sinica, 2017, 66(9): 090704. (in Chinese) doi: 10.7498/aps.66.090704 [94] ZHAO W X, DONG M L, CHEN W D, et al. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm[J]. Analytical Chemistry, 2013, 85(4): 2260-2268. doi: 10.1021/ac303174n [95] ZHAO W, XU X, DONG M, et al. Development of a cavity-enhanced aerosol albedometer[J]. Atmospheric Measurement Techniques, 2014, 7(8): 2551-2566. doi: 10.5194/amt-7-2551-2014 [96] RAO G N, KARPF A. High sensitivity detection of NO2 employing cavity ringdown spectroscopy and an external cavity continuously tunable quantum cascade laser[J]. Applied Optics, 2010, 49(26): 4906-4914. doi: 10.1364/AO.49.004906 [97] 马路遥, 林俊, 张亮, 等. 温室气体浓度监测的光腔衰荡光谱研究进展[J]. 计量学报,2022,43(2):274-280. doi: 10.3969/j.issn.1000-1158.2022.02.22MA L Y, LIN J, ZHANG L, et al. Review on the cavity ring-down spectroscopy for greenhouse gas monitoring[J]. Acta Metrologica Sinica, 2022, 43(2): 274-280. (in Chinese) doi: 10.3969/j.issn.1000-1158.2022.02.22 [98] 刘文清, 王兴平, 马国盛, 等. 高灵敏腔衰荡光谱技术及其应用研究[J]. 光学学报,2021,41(1):0130003. doi: 10.3788/AOS202141.0130003LIU W Q, WANG X P, MA G SH, et al. Research of high sensitivity cavity ring-down spectroscopy technology and its application[J]. Acta Optica Sinica, 2021, 41(1): 0130003. (in Chinese) doi: 10.3788/AOS202141.0130003 [99] BLAIKIE T P J, COUPER J, HANCOCK G, et al. Portable device for measuring breath acetone based on sample preconcentration and cavity enhanced spectroscopy[J]. Analytical Chemistry, 2016, 88(22): 11016-11021. doi: 10.1021/acs.analchem.6b02837 [100] BAYRAKLI I, TURKMEN A, AKMAN H, et al. Applications of external cavity diode laser-based technique to noninvasive clinical diagnosis using expired breath ammonia analysis: chronic kidney disease, epilepsy[J]. Journal of Biomedical Optics, 2016, 21(8): 087004. doi: 10.1117/1.JBO.21.8.087004 [101] NERI G, LACQUANITI A, RIZZO G, et al. Real-time monitoring of breath ammonia during haemodialysis: use of ion mobility spectrometry (IMS) and cavity ring-down spectroscopy (CRDS) techniques[J]. Nephrology Dialysis Transplantation, 2012, 27(7): 2945-2952. doi: 10.1093/ndt/gfr738 [102] GONG Z Y, SUN M X, JIAN C Y, et al. A ringdown breath acetone analyzer: performance and validation using gas chromatography-mass spectrometry[J]. Journal of Analytical &Bioanalytical Techniques, 2014, S7(012): 013. [103] 段俊, 秦敏, 卢雪, 等. 腔增强吸收光谱技术中镜片反射率的标定[J]. 光子学报,2015,44(12):1201001. doi: 10.3788/gzxb20154412.1201001DUAN J, QIN M, LU X, et al. Calibration of mirror reflectivity for cavity enhanced absorption spectroscopy[J]. Acta Photonica Sinica, 2015, 44(12): 1201001. (in Chinese) doi: 10.3788/gzxb20154412.1201001 [104] 吴陆益, 高光珍, 刘新, 等. 腔增强吸收光谱技术中的腔镜反射率标定方法研究[J]. 光谱学与光谱分析,2021,41(9):2945-2949.WU L Y, GAO G ZH, LIU X, et al. Study on the calibration of reflectivity of the cavity mirrors used in cavity enhanced absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2945-2949. (in Chinese) [105] REMPE G, THOMPSON R J, KIMBLE H J, et al. Measurement of ultralow losses in an optical interferometer[J]. Optics Letters, 1992, 17(5): 363-365. doi: 10.1364/OL.17.000363 [106] 李利平, 刘涛, 李刚, 等. 超高精细度光学腔中低损耗的测量[J]. 物理学报,2004,53(5):1401-1405. doi: 10.3321/j.issn:1000-3290.2004.05.026LI L P, LIU T, LI G, et al. Measurement of ultra-low losses in optical supercavity[J]. Acta Physica Sinica, 2004, 53(5): 1401-1405. (in Chinese) doi: 10.3321/j.issn:1000-3290.2004.05.026 [107] WANG CH J, SRIVASTAVA N, DIBBLE T S. Observation and quantification of OH radicals in the far downstream part of an atmospheric microwave plasma jet using cavity ringdown spectroscopy[J]. Applied Physics Letters, 2009, 95(5): 051501. doi: 10.1063/1.3177314 [108] 万福, 陈伟根, 顾朝亮, 等. 光反馈腔增强吸收光谱技术的痕量乙烷检测研究[J]. 光谱学与光谱分析,2015,35(10):2792-2796.WAN F, CHEN W G, GU ZH L, et al. Measurement of trace C2H6 based on optical-feedback cavity-enhanced absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2015, 35(10): 2792-2796. (in Chinese) [109] DICKENS G R, PAULL C K, WALLACE P. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir[J]. Nature, 1997, 385(6615): 426-428. doi: 10.1038/385426a0 [110] SUN Y R, PAN H, CHENG C F, et al. Application of cavity ring-down spectroscopy to the Boltzmann constant determination[J]. Optics Express, 2011, 19(21): 19993-20002. doi: 10.1364/OE.19.019993 [111] MENZEL L, KOSTEREV A A, CURL R F, et al. Spectroscopic detection of biological NO with a quantum cascade laser[J]. Applied Physics B, 2001, 72(7): 859-863. doi: 10.1007/s003400100562 [112] MANNE J, LIM A, JÄGER W, et al. Off-axis cavity enhanced spectroscopy based on a pulsed quantum cascade laser for sensitive detection of ammonia and ethylene[J]. Applied Optics, 2010, 49(28): 5302-5308. doi: 10.1364/AO.49.005302 [113] NASIR E F, FAROOQ A. Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine[J]. Optics Express, 2018, 26(11): 14601-14609. doi: 10.1364/OE.26.014601 [114] PALDUS B A, HARB C C, SPENCE T G, et al. Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers[J]. Optics Letters, 2000, 25(9): 666-668. doi: 10.1364/OL.25.000666 [115] TERABAYASHI R, SONNENSCHEIN V, TOMITA H, et al. Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy[J]. Hyperfine Interactions, 2017, 238(1): 10. doi: 10.1007/s10751-016-1390-6 [116] HUANG H F, LEHMANN K K. CW cavity ring-down spectroscopy (CRDS) with a semiconductor optical amplifier as intensity modulator[J]. Chemical Physics Letters, 2008, 463(1-3): 246-250. doi: 10.1016/j.cplett.2008.08.030 [117] 马维光, 周晓彬, 曹振松, 等. 基于连续波腔衰荡光谱的CO2气体分析装置研制[J]. 量子电子学报,2021,38(5):633-640.MA W G, ZHOU X B, CAO ZH S, et al. Development of CO2 gas analyzer based on continuous wave cavity ring-down spectroscopy[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 633-640. (in Chinese) [118] REN Y J, YAN CH X, WU C J, et al. High-precision static alignment scheme based on the eigenfrequency separation characteristics of same-order hermite-gaussian mode in triangular ring-down cavities[J]. IEEE Access, 2022, 10: 75549-75557. doi: 10.1109/ACCESS.2022.3192425 [119] HUANG H F, LEHMANN K K. Noise in cavity ring-down spectroscopy caused by transverse mode coupling[J]. Optics Express, 2007, 15(14): 8745-8759. doi: 10.1364/OE.15.008745 [120] REN Y J, YAN CH X, WU C J, et al. Resonant frequency separation characteristics of the same-order hermite-gaussian mode in the astigmatic triangular cavity of a cavity ring-down spectroscope[J]. IEEE Access, 2022, 10: 53703-53712. doi: 10.1109/ACCESS.2022.3176452 [121] REN Y J, YAN CH X, ZHANG X M, et al. Resonant coupling of hermite-gaussian transverse modes in the triangular cavity of a cavity ring-down spectroscope[J]. Photonics, 2022, 9(9): 595. doi: 10.3390/photonics9090595 [122] 谭中奇, 龙兴武, 张斌. 探测器的响应特性及对连续波腔衰荡技术测量的影响[J]. 中国 ,2009,36(4):959-963. doi: 10.3788/CJL20093604.0959TAN ZH Q, LONG X W, ZHANG B. Detector's response characteristic and its influence on metrical result of continuous-wave cavity ring-down technique[J]. Chinese Journal of Lasers, 2009, 36(4): 959-963. (in Chinese) doi: 10.3788/CJL20093604.0959 [123] 王金舵, 余锦, 貊泽强, 等. 连续波腔衰荡光谱技术中模式筛选的数值方法[J]. 物理学报,2019,68(24):244201. doi: 10.7498/aps.68.20190844WANG J D, YU J, MO Z Q, et al. Numerical methods of mode selection in continuous-wave cavity ring-down spectroscopy[J]. Acta Physica Sinica, 2019, 68(24): 244201. (in Chinese) doi: 10.7498/aps.68.20190844 [124] 赵刚, 李志新, 马维光, 等. 阈值电路特性对腔衰荡光谱测量影响的实验研究[J]. 光谱学与光谱分析,2014,34(8):2026-2030. doi: 10.3964/j.issn.1000-0593(2014)08-2026-05ZHAO G, LI ZH X, MA W G, et al. Experimental investigations of cavity ring-down spectroscopy under different threshold circuit design[J]. Spectroscopy and Spectral Analysis, 2014, 34(8): 2026-2030. (in Chinese) doi: 10.3964/j.issn.1000-0593(2014)08-2026-05 [125] MEIJER G, BOOGAARTS M G H, JONGMA R T, et al. Coherent cavity ring down spectroscopy[J]. Chemical Physics Letters, 1994, 217(1-2): 112-116. doi: 10.1016/0009-2614(93)E1361-J [126] 胡誉元, 貊泽强, 唐吉龙, 等. 锁频技术在腔衰荡光谱检测中的研究进展及典型应用[J/OL]. 与光电子学进展, 2022. (2023-04-08). http://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1335.431.html.HU Y Y, MO Z Q, TANG J L, et al.. Research progress and typical applications of frequency locking technique in cavity ring-down spectroscopy detection[J/OL]. Laser & Optoelectronics Progress, 2022. (2023-04-08). http://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1335.431.html. (in Chinese) [127] PALDUS B A, KACHANOV A A. An historical overview of cavity-enhanced methods[J]. Canadian Journal of Physics, 2005, 83(10): 975-999. doi: 10.1139/p05-054 [128] SPENCE T G, HARB C C, PALDUS B A, et al. A laser-locked cavity ring-down spectrometer employing an analog detection scheme[J]. Review of Scientific Instruments, 2000, 71(2): 347-353. doi: 10.1063/1.1150206 [129] HALMER D, VON BASUM G, HERING P, et al. Fast exponential fitting algorithm for real-time instrumental use[J]. Review of Scientific Instruments, 2004, 75(6): 2187-2191. doi: 10.1063/1.1711189 [130] MAZURENKA M, WADA R, SHILLINGS A J L, et al. Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2[J]. Applied Physics B, 2005, 81(1): 135-141. doi: 10.1007/s00340-005-1834-1 [131] BOYSON T K, SPENCE T G, CALZADA M E, et al. Frequency domain analysis for laser-locked cavity ringdown spectroscopy[J]. Optics Express, 2011, 19(9): 8092-8101. doi: 10.1364/OE.19.008092