-
摘要:
单波长金宝搏188软件怎么用 通信终端之间数据通信时,信号传输与接收间良好的隔离性能是建立双工双向金宝搏188软件怎么用 通信的关键。本文针对单个金宝搏188软件怎么用 波长金宝搏188软件怎么用 通信端机的传输与接收方案,以及金宝搏188软件怎么用 通信终端整体的通信性能,分析了关键元器件的表面粗糙度和表面清洁度水平对金宝搏188软件怎么用 通信终端隔离性能的影响。通过Harvey模型、ABg模型推导模型参数。利用TracePro软件对所设计的方案进行分析。得出以下结论:当信号传输通道中
λ /2波片、λ /4波片和光学天线结构的表面粗糙度变好或者表面清洁度提升时,元件带来的后向散射会降低信号传输通道内的隔离性能。同时,金宝搏188软件怎么用 通信终端隔离度的测量结果为77.86 dB,与软件仿真结果78.35 dB基本一致,这一结果可以应用于金宝搏188软件怎么用 通信系统。-
关键词:
- 金宝搏188软件怎么用 通信 /
- 杂散光分析 /
- 隔离度 /
- 表面粗糙度 /
- 表面清洁度
Abstract:For data communication between single wavelength laser communication terminals, good isolation between signal transmission and reception is the key to establishing duplex bidirectional laser communication. In this paper, with respect to the transmission and reception scheme of a single laser wavelength laser communication terminal and its overall communication performance, the influence of the surface roughness and contamination level of key components on the isolation performance of the laser communication terminal is analyzed. The model parameters are derived from Harvey model and ABg model, and the designed scheme is analyzed using TracePro software. When the surface roughness or contamination level of
λ /2 wave plate,λ /4 wave plate and optical antenna structure in the signal transmission channel is improved, the backscattering caused by these elements will reduce the isolation performance in the signal transmission channel. At the same time, the measurement result of laser communication terminal isolation is 77.86 dB, which is basically consistent with the software simulation result of 78.35 dB. This can be applied in laser communication system.-
Key words:
- laser communication /
- stray light analysis /
- isolation /
- roughness /
- contamination level
-
表 1 不同表面粗糙度ABg模型参数
Table 1. ABg model parameters for different surface roughnesses
表面粗糙度(nm) A B g 3 4.2365×10−5 4.4415×10−5 1.55 6 1.6940×10−4 4.4415×10−5 1.55 9 3.8130×10−4 4.4415×10−5 1.55 12 6.7787×10−4 4.4415×10−5 1.55 15 1.0580×10−3 4.4415×10−5 1.55 表 2 不同表面粗糙度光学天线ABg模型参数
Table 2. ABg model parameters of the optical antenna with different surface roughnesses
表面粗糙度(nm) A B g 主镜 3 3.0643×10−5 4.4415×10−5 1.55 6 1.2257×10−4 4.4415×10−5 1.55 9 2.7579×10−4 4.4415×10−5 1.55 12 4.8737×10−4 4.4415×10−5 1.55 15 7.6152×10−4 4.4415×10−5 1.55 次镜 3 4.0426×10−5 4.4415×10−5 1.55 6 1.6171×10−4 4.4415×10−5 1.55 9 3.6384×10−4 4.4415×10−5 1.55 12 6.4682×10−4 4.4415×10−5 1.55 15 1.0106×10−3 4.4415×10−5 1.55 表 3 不同清洁度(CL)ABg模型参数
Table 3. ABg model parameters for different contamination levels
表面清洁度CL A B g 200 7.237×10−6 6.102×10−5 1.5 400 1.685×10−4 6.102×10−5 1.5 600 1.271×10−3 6.102×10−5 1.5 800 5.769×10−3 6.102×10−5 1.5 表 4 光学设计指标
Table 4. Optical design indexes
指标 参数 倍率 10× 入瞳直径/mm 75 设计波长/nm 1550 最大接收视场/mrad 5 金宝搏188软件怎么用 发射功率/dBm 33 接收器灵敏度 −45 dBm@10 Gbps 表 5 隔离度测试结果
Table 5. Test results of isolation
1 2 3 平均值 发射功率/dBm 28 29 30 通信接收功率/dBm −49.8 −49.0 −47.8 隔离度/dB 77.8 78.0 77.8 77.86 -
[1] 姜会林, 付强, 赵义武, 等. 空间信息网络与金宝搏188软件怎么用 通信发展现状及趋势[J]. 物联网学报,2019,3(2):1-8.JIANG H L, FU Q, ZHAO Y W, et al. Development status and trend of space information network and laser communication[J]. Chinese Journal on Internet of Things, 2019, 3(2): 1-8. (in Chinese) [2] 高世杰, 吴佳彬, 刘永凯, 等. 微小卫星金宝搏188软件怎么用 通信系统发展现状与趋势[J]. 中国光学,2020,13(6):1171-1181. doi: 10.37188/CO.2020-0033GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. (in Chinese) doi: 10.37188/CO.2020-0033 [3] 田思聪, 佟存柱, 王立军, 等. 长春光机所高速垂直腔面发射金宝搏188软件怎么用 器研究进展[J]. 中国光学(中英文),2022,15(5):946-953. doi: 10.37188/CO.2022-0136TIAN S C, TONG C ZH, WANG L J, et al. Research progress of high-speed vertical-cavity surface-emitting laser in CIOMP[J]. Chinese Optics, 2022, 15(5): 946-953. (in Chinese) doi: 10.37188/CO.2022-0136 [4] KAUSHAL H, KADDOUM G. Optical communication in space: challenges and mitigation techniques[J]. IEEE Communications Surveys &Tutorials, 2017, 19(1): 57-96. [5] 李禹希, 张刘, 陈思桐, 等. 基于自抗扰算法的光电跟踪伺服控制方法研究[J]. 中国光学,2022,15(3):562-567. doi: 10.37188/CO.2022-0090LI Y X, ZHANG L, CHEN S T, et al. Photoelectric tracking servo control method based on active disturbance rejection algorithm[J]. Chinese Optics, 2022, 15(3): 562-567. (in Chinese) doi: 10.37188/CO.2022-0090 [6] 高铎瑞, 李天伦, 孙悦, 等. 空间金宝搏188软件怎么用 通信最新进展与发展趋势[J]. 中国光学,2018,11(6):901-913. doi: 10.3788/CO.20181106.0901GAO D R, LI T L, SUN Y, et al. Latest developments and trends of space laser communication[J]. Chinese Optics, 2018, 11(6): 901-913. (in Chinese) doi: 10.3788/CO.20181106.0901 [7] 吴从均, 颜昌翔, 高志良. 空间金宝搏188软件怎么用 通信发展概述[J]. 中国光学,2013,6(5):670-680. doi: 10.3788/CO.20130605.0670WU C J, YAN CH X, GAO ZH L. Overview of space laser communications[J]. Chinese Optics, 2013, 6(5): 670-680. (in Chinese) doi: 10.3788/CO.20130605.0670 [8] 吕博, 冯睿, 寇伟, 等. 折反射式空间相机光学系统设计与杂散光抑制[J]. 中国光学,2020,13(4):822-831. doi: 10.37188/CO.2019-0036LÜ B, FENG R, KOU W, et al. Optical system design and stray light suppression of catadioptric space camera[J]. Chinese Optics, 2020, 13(4): 822-831. (in Chinese) doi: 10.37188/CO.2019-0036 [9] 夏方园, 杨建峰, 幺周石, 等. 卡塞格伦光学天线收发隔离度分析与测试[J]. 光子学报,2017,46(10):1023001. doi: 10.3788/gzxb20174610.1023001XIA F Y, YANG J F, YAO ZH SH, et al. Transmit-receive isolation analysis and test of cassegrain optical antenna[J]. Acta Photonica Sinica, 2017, 46(10): 1023001. (in Chinese) doi: 10.3788/gzxb20174610.1023001 [10] 曲杨. 高精度低成本金宝搏188软件怎么用 振镜扫描3D视觉系统关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.QU Y. Key technologies of high percision and low cost galvanometer scanning laser 3D vision system[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese) [11] XIA F Y, YANG J F, YAO Z S, et al. Investigation of isolation for free space laser communication in the mono-wavelength optical T/R channels[J]. Optik, 2019, 181: 738-747. doi: 10.1016/j.ijleo.2018.12.090 [12] 凌晋江, 李钢, 张仁斌, 等. 偏振光谱BRDF建模与仿真[J]. 光谱学与光谱分析,2016,36(1):42-46. doi: 10.3964/j.issn.1000-0593(2016)01-0042-05LING J J, LI G, ZHANG R B, et al. Modeling and simulation of spectral polarimetric BRDF[J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 42-46. (in Chinese) doi: 10.3964/j.issn.1000-0593(2016)01-0042-05 [13] BENNETT H E. Scattering characteristics of optical materials[J]. Optical Engineering, 1978, 17(5): 175480. [14] 王虎, 陈钦芳, 马占鹏, 等. 杂散光抑制与评估技术发展与展望(特邀)[J]. 光子学报,2022,51(7):0751406. doi: 10.3788/gzxb20225107.0751406WANG H, CHEN Q F, MA ZH P, et al. Development and prospect of stray light suppression and evaluation technology (Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751406. (in Chinese) doi: 10.3788/gzxb20225107.0751406 [15] 李茂月, 刘泽隆, 赵伟翔, 等. 面结构光在机检测的叶片反光抑制技术[J]. 中国光学,2022,15(3):464-475. doi: 10.37188/CO.2021-0194LI M Y, LIU Z L, ZHAO W X, et al. Blade reflection suppression technology based on surface structured light on-machine detection[J]. Chinese Optics, 2022, 15(3): 464-475. (in Chinese) doi: 10.37188/CO.2021-0194 [16] 石栋梁. 基于BRDF的光机系统杂散辐射研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.SHI D L. Research on stray light of optical and mechanical system based on BRDF[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese) [17] 李朝辉, 赵建科, 徐亮, 等. 点源透过率测试系统精度标定与分析[J]. 物理学报,2016,65(11):114206. doi: 10.7498/aps.65.114206LI ZH H, ZHAO J K, XU L, et al. Analysis and calibration of precision for point source transmittance system[J]. Acta Physica Sinica, 2016, 65(11): 114206. (in Chinese) doi: 10.7498/aps.65.114206 [18] HUBBARD R. M1 microroughness and dust contamination[EB/OL]. (2013-11). https://dkist.nso.edu/sites/atst.nso.edu/files/docs/TN-0013-D.pdf.