留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InGaAs/AlGaAs quantum well intermixing induced by Si impurities under multi-variable conditions

LIU Cui-cui LIN Nan MA Xiao-yu ZHANG Yue-ming LIU Su-ping

刘翠翠, 林楠, 马骁宇, 张月明, 刘素平. 多变量Si杂质诱导InGaAs/AlGaAs量子阱混杂研究[J]. , 2023, 16(6): 1512-1523. doi: 10.37188/CO.2022-0257
引用本文: 刘翠翠, 林楠, 马骁宇, 张月明, 刘素平. 多变量Si杂质诱导InGaAs/AlGaAs量子阱混杂研究[J]. , 2023, 16(6): 1512-1523. doi: 10.37188/CO.2022-0257
LIU Cui-cui, LIN Nan, MA Xiao-yu, ZHANG Yue-ming, LIU Su-ping. InGaAs/AlGaAs quantum well intermixing induced by Si impurities under multi-variable conditions[J]. Chinese Optics, 2023, 16(6): 1512-1523. doi: 10.37188/CO.2022-0257
Citation: LIU Cui-cui, LIN Nan, MA Xiao-yu, ZHANG Yue-ming, LIU Su-ping. InGaAs/AlGaAs quantum well intermixing induced by Si impurities under multi-variable conditions[J]. Chinese Optics, 2023, 16(6): 1512-1523. doi: 10.37188/CO.2022-0257

多变量Si杂质诱导InGaAs/AlGaAs量子阱混杂研究

详细信息
  • 中图分类号: TN248.2

InGaAs/AlGaAs quantum well intermixing induced by Si impurities under multi-variable conditions

doi: 10.37188/CO.2022-0257
Funds: Supported by Key Areas Research and Development Program of Guangdong Province of China (No. 2020B090922003); Young Talents Project of China National Nuclear Corporation (No. 11FY212306000801)
More Information
    Author Bio:

    Liu Cuicui (1993—), female, from Cangzhou, Hebei Province, Doctor, Associate Researcher, received a Ph.D. degree from the Institute of Semiconductor Research of the Chinese Academy of Sciences in 2020, mainly engaged in research on reliability of semiconductor lasers and semiconductor power devices. E-mail: sissiliu2020@163.com

    Ma Xiaoyu (1963—), male, Ph. D., Researcher, Doctoral Supervisor,received a Master's degree from Jilin University in 1987, mainly engaged in research on optoelectronic device design and epitaxial growth. E-mail: maxy@semi.ac.cn

    Corresponding author: maxy@semi.ac.cn
  • 摘要:

    腔面光学灾变损伤是导致高功率量子阱半导体 器阈值输出功率受限制的关键因素。通过量子阱混杂技术调整半导体 器腔面局部区域处有源区材料的带隙宽度,形成对输出光透明的非吸收窗口,可提高 器输出功率。本文基于InGaAs/AlGaAs高功率量子阱半导体 器初级外延片,以外延Si单晶层作为扩散源,结合快速热退火方法开展了杂质诱导量子阱混杂研究。探索了介质层生长温度、介质层厚度、热处理温度、热处理时间等条件对混杂效果的影响。结果表明,50 nm的650 °C低温外延Si介质层并结合875 °C/90 s快速热退火处理可在保证光致发光谱的同时获得约57 nm的波长蓝移量。能谱测试发现,Si杂质扩散到初级外延片上的波导层是导致量子阱混杂效果显著的关键。

     

  • 图 1  InGaAs/AlGaAs 量子阱 器的外延结构

    Figure 1.  Epitaxial structure of InGaAs/AlGaAs QW laser diode

    图 2  InGaAs/AlGaAs量子阱初级外延片的PL谱测试结果

    Figure 2.  The PL spectrum of InGaAs/AlGaAs QW primary epitaxial wafer

    图 3  III族原子相对互扩散系数与温度的关系

    Figure 3.  The relationship between relative interdiffusion coefficient and temperature

    图 4  退火后初级外延片形变的COMSOL模拟结果

    Figure 4.  Deformation results of primary epitaxial wafer simulated by COMSOL after annealing

    图 5  (a)有、(b)无盖片退火后外延片的表面形貌

    Figure 5.  Surface morphology (a) with and (b) without epitaxial wafers after RTA

    图 6  RTA温度对初级外延片波长蓝移的影响

    Figure 6.  Effect of RTA temperature on wavelength blue shift of primary epitaxial wafers

    图 7  RTA时间对初级外延片波长蓝移的影响

    Figure 7.  Effect of RTA time on wavelength blue shift of primary epitaxial wafers

    图 8  Si介质层对初级外延片波长蓝移的影响

    Figure 8.  Effect of different silicon layers on wavelength blue shift of primary epitaxial wafers

    图 9  EDS测试875 °C/90 s RTA处理后初级外延片不同腐蚀时长的元素组成。(a)未处理样品;(b)腐蚀15 s;(c)腐蚀30 s;(d)腐蚀45 s

    Figure 9.  Surface EDS results of element composition at different corrosion times of primary epitaxial wafers after 875 °C/90 s RTA. (a) Untreated sammple; (b) corrosion for 15 s; (c) corrosion for 30 s; (d) corrosion for 45 s

    表  1  Young's modulus, Poisson’s ratio, density and coefficient of thermal expansion of related materials

    Table  1.   Young's modulus, Poisson’s ratio, density and coefficient of thermal expansion of related materials

    Sample GaAs Si SiO2
    Young's modulus(Pa) 8.50×1010 1.77×1011 7.31×1010
    Poisson's ratio 0.31 0.2891 0.17
    Density(kg/m3) 5500 2328 2203
    Coefficient of thermal expansion(1/K) 6.40×10−6 2.60×10−6 5.50×10−7
    下载: 导出CSV
    Baidu
  • [1] COOPER D, GOOCH C, SHERWELL R. Internal self-damage of gallium arsenide lasers[J]. IEEE Journal of Quantum Electronics, 1966, 2(8): 329-330. doi: 10.1109/JQE.1966.1074057
    [2] CHINONE N, NAKASHIMA H, ITO R. Long-term degradation of GaAs-Ga1- x Al x As DH lasers due to facet erosion[J]. Journal of Applied Physics, 1977, 48(3): 1160-1162. doi: 10.1063/1.323796
    [3] WANG L J, TONG C ZH, WANG Y J, et al. Recent advances in lateral mode control technology of diode lasers[J]. Chinese Optics, 2022, 15(5): 895-911. (in Chinese). doi: 10.37188/CO.2022-0143
    [4] HEMPEL M, TOMM J W, ZIEGLER M, et al. Catastrophic optical damage at front and rear facets of diode lasers[J]. Applied Physics Letters, 2010, 97(23): 231101. doi: 10.1063/1.3524235
    [5] WANG Y X, ZHU L N, ZHONG L, et al. InGaAs/GaAs(P) quantum well intermixing induced by Si impurity diffusion[J]. Chinese Optics, 2022, 15(3): 426-432. (in Chinese). doi: 10.37188/CO.2021-0200
    [6] LIU C C, LIN N, XIONG C, et al. Intermixing in InGaAs/AlGaAs quantum well structures induced by the interdiffusion of Si impurities[J]. Chinese Optics, 2020, 13(1): 203-216. (in Chinese). doi: 10.3788/co.20201301.0203
    [7] WALKER C L, BRYCE A C, MARSH J H. Improved catastrophic optical damage level from laser with nonabsorbing mirrors[J]. IEEE Photonics Technology Letters, 2002, 14(10): 1394-1396. doi: 10.1109/LPT.2002.802080
    [8] WANG X, ZHAO Y H, ZHU L N, et al. Impurity-free vacancy diffusion induces quantum well intermixing in 915 nm semiconductor laser based on SiO2 film[J]. Acta Photonica Sinica, 2018, 47(3): 0314003. (in Chinese). doi: 10.3788/gzxb20184703.0314003
    [9] GE X H, ZHANG R Y, GUO CH Y, et al. Multiple factor ion implantation-induced quantum well intermixing effect[J]. Laser & Optoelectronics Progress, 2020, 57(1): 011409. (in Chinese).
    [10] LIN T, LI Y N, XIE J N, et al. Composition and interface research on quantum well intermixing between a tensile GaInP quantum well and compressed AlGaInP barriers[J]. Journal of Electronic Materials, 2022, 51(8): 4368-4377. doi: 10.1007/s11664-022-09704-6
    [11] LIN T, LI Y N, XIE J N, et al. Quantum well intermixing of tensile strain GaInP quantum well structures induced by ion implantation and thermal annealing[J]. Materials Science in Semiconductor Processing, 2022, 138: 106306. doi: 10.1016/j.mssp.2021.106306
    [12] LAIDIG W D, HOLONYAK JR N, CAMRAS M D, et al. Disorder of an AlAs-GaAs superlattice by impurity diffusion[J]. Applied Physics Letters, 1981, 38(10): 776-778. doi: 10.1063/1.92159
    [13] KALISKI R W, GAVRILOVIC P, MEEHAN K, et al. Photoluminescence and stimulated emission in Si-and Ge-disordered Al x Ga1- x As-GaAs superlattices[J]. Journal of Applied Physics, 1985, 58(1): 101-107. doi: 10.1063/1.335710
    [14] MEI P, YOON H W, VENKATESAN T, et al. Kinetics of silicon-induced mixing of AlAs-GaAs superlattices[J]. Applied Physics Letters, 1987, 50(25): 1823-1825. doi: 10.1063/1.97709
    [15] LIAO M Y, LI W, TANG M CH, et al. Selective area intermixing of III-V quantum-dot lasers grown on silicon with two wavelength lasing emissions[J]. Semiconductor Science and Technology, 2019, 34(8): 085004. doi: 10.1088/1361-6641/ab2c24
    [16] QIU B C, MARTIN H H, WANG W M, et al. Design and fabrication of 12 W high power and high reliability 915 nm semiconductor lasers[J]. Chinese Optics, 2018, 11(4): 590-603. (in Chinese). doi: 10.3788/co.20181104.0590
    [17] LI X, SHA Y Q, JIANG CH W, et al. Fabrication and characterization of ultra-thin GaN-based LED freestanding membrane[J]. Chinese Optics, 2020, 13(4): 873-883. (in Chinese). doi: 10.37188/CO.2019-0192
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  154
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-28
  • 修回日期:  2023-02-05
  • 录用日期:  2023-09-21
  • 网络出版日期:  2023-09-21

目录

    /

    返回文章
    返回
    Baidu
    map