留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

特种芯光纤光镊技术研究进展

李红 朱应鑫 周雅妮 王海波 董明利 祝连庆

李红, 朱应鑫, 周雅妮, 王海波, 董明利, 祝连庆. 特种芯光纤光镊技术研究进展[J]. , 2023, 16(6): 1293-1304. doi: 10.37188/CO.2023-0016
引用本文: 李红, 朱应鑫, 周雅妮, 王海波, 董明利, 祝连庆. 特种芯光纤光镊技术研究进展[J]. , 2023, 16(6): 1293-1304. doi: 10.37188/CO.2023-0016
LI Hong, ZHU Ying-xin, ZHOU Ya-ni, WANG Hai-bo, DONG Ming-li, ZHU Lian-qing. Advances in optical fiber tweezer technology based on hetero-core fiber[J]. Chinese Optics, 2023, 16(6): 1293-1304. doi: 10.37188/CO.2023-0016
Citation: LI Hong, ZHU Ying-xin, ZHOU Ya-ni, WANG Hai-bo, DONG Ming-li, ZHU Lian-qing. Advances in optical fiber tweezer technology based on hetero-core fiber[J]. Chinese Optics, 2023, 16(6): 1293-1304. doi: 10.37188/CO.2023-0016

特种芯光纤光镊技术研究进展

基金项目: 国家自然科学基金(No. 61903042);北京市自然基金(No. 4202027);北京信息科技大学2022年大学生创新创业训练计划项目(No. S202211232012)
详细信息
    作者简介:

    李 红(1985—),女,河北唐山人,博士,硕士生导师,2016年于合肥工业大学获得博士学位,主要研究方向为光纤传感技术、仪器科学与精密测量等。E-mail:lihong@bistu.edu.cn

    朱应鑫(1998—),男,山东济南人,硕士研究生,2021年于青岛理工大学获得学士学位,主要研究方向为光纤光镊技术。E-mail:zhuyingxin1998@163.com

  • 中图分类号: Q631

Advances in optical fiber tweezer technology based on hetero-core fiber

Funds: Supported by National Natural Science Foundation of China (No. 61903042); Beijing Natural Science Foundation (No. 4202027); 2022 Undergraduate Innovation and Entrepreneurship Training Program of BISTU (No. S202211232012)
More Information
  • 摘要:

    光纤光镊具有结构简单、操作灵活、尺寸小的特点,在生化分析、生命科学等领域有广泛应用。特殊纤芯结构的光纤探针在近场倏逝波光阱力、纤芯光束耦合传输、微流控技术交叉协同应用等方面具有天然优势,能实现细胞、亚细胞级微粒收集、输运等功能,可以显著提升微粒的三维捕获能力以及动态操纵水平。本文综述了不同纤芯结构光纤光镊的结构特点与应用技术研究进展,对特种芯光纤光镊系统中探针制备、 光源、耦合方式等关键技术进行了梳理和对比,总结与展望了不同结构特种芯光纤在光纤光镊中的作用与发展。

     

  • 图 1  常见特种芯光纤横截面示意图

    Figure 1.  Cross section diagram of common hetero-core fibers

    图 2  特种芯光纤光镊系统组成

    Figure 2.  Hetero-core optical fiber tweezers system

    图 3  特种芯光纤探针耦合结构示意图。(a)单模光纤直接熔接探针中一芯,耦合后双芯通光;(b)单模光纤直接熔接双芯探针,拉锥熔接区域耦合通光[22];(c)单模光纤错芯熔接多模探针,干涉产生不对称类贝塞尔光束[27];(d)单模错位熔接中空环形芯光纤探针[13];(e)单模光纤纳米探针耦合中空光子晶体光纤[28]

    Figure 3.  Schematic diagrams of hetero-core optical fiber probe coupling structures. (a) Single-mode fiber direct fusion probe in one core, and the two-core light is achieved after coupling; (b) single-mode fiber direct fusion dual-core probe, taper welding area coupled through light[22]; (c) single-mode fiber core-offset splicing multimode probe to generate asymmetric Bessel-like beam by interference[27];(d) single-mode dislocation splicing hollow ring core fiber probe[13]; (e) single-mode fiber nanoprobe coupled hollow photonic crystal fiber[28]

    图 4  基于多芯结构光纤光镊探针结构。(a)等离子体锥形双芯光纤光镊横截面[19];(b)三芯光学微手结构与涡旋光场场强分布[38];(c)四芯光纤端面显微镜照片,光纤直径150 μm对角纤芯间距65 μm;光纤镊的截面设计;两收敛光束从加工对角纤芯传播的三维示意图,收敛区域球体代表一个被捕获细胞[15]

    Figure 4.  Probe structure based on multi-core fiber optical tweezers. (a) Cross section of plasma tapered dual-core optical fiber tweezers [19]; (b) three-core optical micro-hand structure and vortex field intensity distribution[38]; (c) Four-core fiber end face microscope photo, fiber diameter is 150 μm and diagonal core spacing is 65 μm; design of fiber tweezers' cross section; a three-dimensional diagram of two convergent beams propagating from the processing diagonal fiber core. The sphere in the convergent region represents a captured cell[15]

    图 5  ACF光纤光镊结构与工作示意图。(a)鸟喙形环形芯光纤探针及微粒受力仿真示意图[44];(b)中空环形芯光纤光镊[13];(c)环形芯光纤截面图像,带二氧化硅微球的环形芯光纤探头图像,暗场光漏斗原理图[14];(d)基于同轴环形双波导的尺寸测量干涉方法示意图, M1为纤维端面, M2为被困微球左侧, MS为微球[45]

    Figure 5.  Structure and operating diagram of optical fiber tweezers with ring core structure.(a) Beak-shaped ring-core optic fiber probe and particle force simulation diagram[44]; (b) hollow ring core optical fiber tweezers[13]; (c) cross-section image of annular core fiber, image of annular core fiber probe with silica microspheres, and schematic diagram of dark field optical funnel[14]; (d) schematic diagram of size measurement interference method based on coaxial ring double waveguide. M1 is the fiber end face, M2 is the left side of the trapped microsphere, and MS is the microsphere[45]

    图 6  基于其他结构光纤的光镊探针结构及工作原理。(a)椭圆芯光纤光镊采用LP11模式 旋转酵母细胞[57];(b)多模干涉产生类贝塞尔光束原理示意图;制备全光纤类贝塞尔发生器及其几何参数图像[16]

    Figure 6.  The structure and working principle of optical tweezers probe based on other core fiber structures. (a) Elliptical core optical fiber tweezers rotating yeast cells by using LP11 mode laser [57]; (b) schematic diagram of the principle of Bessel-like beam generated by multimode interference; fabricated all-fiber Bessel beam generation and its geometric parameters[16]

    表  1  特种芯光纤光镊微粒捕获能力汇总

    Table  1.   Summary of particle capture abilities of hetero-core optical fiber tweezers

    光镊形式光纤种类微粒折射率微粒直径(µm)功能参考文献
    中空圆台探针环形芯聚苯乙烯小球1.39、1.49、1.5915、25、35捕获、收集、输运[13]
    二氧化硅微球
    集成探针
    环形芯二氧化硅小球2.26捕获吸收性微粒[14]
    对角反射镜探针四芯酵母菌细胞
    (椭球形)
    ——7捕获[15]
    类贝塞尔发生器空心聚苯乙烯小球1.5510多点位捕获[16]
    金字塔棱锥探针七芯酵母菌细胞
    (椭球形)
    ——6捕获位置可调节轴向双向输运[17]
    光学微手四芯酵母菌细胞
    (椭球形)
    ——4-6捕获旋转[18]
    近场等离子激元双芯聚苯乙烯小球1.490.01-5二维捕获[19]
    近场倏逝波双芯聚苯乙烯小球1.592二维捕获[20]
    下载: 导出CSV

    表  2  常用探针加工方法优缺点对比[21-24]

    Table  2.   Comparison of probe processing methods[21-24]

    加工方法优势劣势
    研磨抛光法可加工锥形、楔形、多边金字塔型,或抛光侧面实现反射;
    加工速度快,可重复性高
    对准精度要求高
    光纤蚀刻法灵活性高、成本低、可重复性高,容易调整锥角高危险腐蚀剂;表面相对粗糙;难以加工复杂结构
    聚焦离子束铣削高精度加工,可加工不同角度棱锥或棱柱形成本高;易受杂质离子干扰;不适于批量生产
    熔融拉锥操作简便;成本低可重复性低,不适用批量生产
    光纤端面镀膜操作简单;能激发表面等离子体效应易受杂质影响
    加压熔融拉锥制备具有中空孔光纤探针可重复性低,不适用批量生产
    下载: 导出CSV
    Baidu
  • [1] ASHKIN A. Trapping of atoms by resonance radiation pressure[J]. Physical Review Letters, 1978, 40(12): 729-732. doi: 10.1103/PhysRevLett.40.729
    [2] TOKONAMI S. External-field-induced assembly for biological analytical chemistry[J]. Analytical Sciences, 2021, 37(3): 395-396. doi: 10.2116/analsci.highlights2103
    [3] 蔡宸, 张韫宏. 光镊技术在气溶胶物理化学表征中的应用[J]. 中国光学,2017,10(5):641-655. doi: 10.3788/co.20171005.0641

    CAI CH, ZHANG Y H. Application of optical tweezers technology in physical chemistry characterization of aerosol[J]. Chinese Optics, 2017, 10(5): 641-655. (in Chinese) doi: 10.3788/co.20171005.0641
    [4] STOEV I D, SEELBINDER B, ERBEN E, et al. Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap[J]. eLight, 2021, 1(1): 1-9.
    [5] FILIPPI J, DI GIUSEPPE D, CASTI P, et al. Exploiting spectral information in Opto-Electronic Tweezers for cell classification and drug response evaluation[J]. Sensors and Actuators B:Chemical, 2022, 368: 132200. doi: 10.1016/j.snb.2022.132200
    [6] GAYATHRI R, KAR S, NAGAI M, et al. Single-cell patterning: a new frontier in bioengineering[J]. Materials Today Chemistry, 2022, 26: 101021. doi: 10.1016/j.mtchem.2022.101021
    [7] 李银妹, 王浩威, 龚雷. 光镊技术在生命科学研究中的应用现状[J]. 生物学杂志,2019,36(3):1-8.

    LI Y M, WANG H W, GONG L. Current applied researches of optical tweezers in biology[J]. Journal of Biology, 2019, 36(3): 1-8. (in Chinese)
    [8] LIU Y, DING H, LI J, et al. Light-driven single-cell rotational adhesion frequency assay[J]. elight, 2022, 2(1): 1-11.
    [9] LIU ZH H, SHA CH Y, ZHANG Y, et al. Improved photopolymerization for fabricating fiber optical tweezers[J]. Optics Communications, 2022, 508: 127801. doi: 10.1016/j.optcom.2021.127801
    [10] LIU CH, LIU ZH H. Design of micro-optical tweezers[J]. Proceedings of SPIE, 2011, 8202: 820212. doi: 10.1117/12.906996
    [11] LIAO C, XIONG C, ZHAO J, et al. Design and realization of 3D printed fiber-tip microcantilever probes applied to hydrogen sensing[J]. Light: Advanced Manufacturing, 2022, 3(1): 3-13.
    [12] SUN X, LEI Z, ZHONG H, et al. A quasi-3D Fano resonance cavity on optical fiber end-facet for high signal-to-noise ratio dip-and-read surface plasmon sensing[J]. Light: Advanced Manufacturing, 2022, 3(4): 665-675.
    [13] ZHANG Y, LI Y, ZHANG Y X, et al. HACF-based optical tweezers available for living cells manipulating and sterile transporting[J]. Optics Communications, 2018, 427: 563-566. doi: 10.1016/j.optcom.2018.07.022
    [14] LIU ZH H, WANG L, ZHANG Y, et al. Optical funnel for living cells trap[J]. Optics Communications, 2019, 431: 196-198. doi: 10.1016/j.optcom.2018.09.023
    [15] ANASTASIADI G, LEONARD M, PATERSON L, et al. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation[J]. Optics Express, 2018, 26(3): 3557-3567. doi: 10.1364/OE.26.003557
    [16] LEE S R, KIM J, LEE S, et al. All-silica fiber Bessel-like beam generator and its applications in longitudinal optical trapping and transport of multiple dielectric particles[J]. Optics Express, 2010, 18(24): 25299-25305. doi: 10.1364/OE.18.025299
    [17] TANG X Y, ZHANG Y, ZHANG Y X, et al. All-fiber active tractor beam generator and its application[J]. Journal of Lightwave Technology, 2020, 38(6): 1420-1426. doi: 10.1109/JLT.2019.2953335
    [18] ZHANG Y, LIU ZH H, YANG J, et al. Four-core optical fiber micro-hand[J]. Journal of Lightwave Technology, 2012, 30(10): 1487-1491. doi: 10.1109/JLT.2012.2187772
    [19] FOOLADI E, SADEGHI M, ADELPOUR Z, et al. Performance improvement of a plasmonic tapered twin–core fiber optical tweezers[J]. Optik, 2021, 245: 167656. doi: 10.1016/j.ijleo.2021.167656
    [20] HOU G H, LIU ZH H. The simulation research of multi-core optical fiber near-field optical tweezers[J]. Proceedings of SPIE, 2011, 8202: 82020K.
    [21] LIU ZH H, GUO CH K, YANG J, et al. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application[J]. Optics Express, 2006, 14(25): 12510-12516. doi: 10.1364/OE.14.012510
    [22] 刘福禄, 张钰民, 孟凡勇, 等. 基于端面镀膜和基底增敏的级联法布里-珀罗光纤温度传感器[J]. 仪器仪表学报,2020,41(11):105-111.

    LIU F L, ZHANG Y M, MENG F Y, et al. Fiber temperature sensor based on the cascaded Fabry-Perot with end face coating and substrate sensitization[J]. Chinese Journal of Scientific Instrument, 2020, 41(11): 105-111. (in Chinese)
    [23] 贺健康, 张立超, 才玺坤, 等. 离子束溅射制备GdF3光学薄膜沉积速率分布特性[J]. 中国光学,2016,9(3):356-363. doi: 10.3788/co.20160903.0356

    HE J K, ZHANG L CH, CAI X K, et al. Deposition rate distribution of GdF3 optical coating prepared by ion beam sputtering[J]. Chinese Optics, 2016, 9(3): 356-363. (in Chinese) doi: 10.3788/co.20160903.0356
    [24] 宁哲达, 王一晴, 陈天天, 等. 磁控溅射沉积银薄膜/涂层的研究进展[J]. 稀有金属材料与工程,2022,51(12):4773-4782.

    NING ZH D, WANG Y Q, CHEN T T, et al. Research progress of silver films/coatings deposited by magnetron sputtering[J]. Rare Metal Materials and Engineering, 2022, 51(12): 4773-4782. (in Chinese)
    [25] ZHANG X T, YUAN T T, YUAN Y G, et al. Twin-core fiber end polish technique for particle trapping[J]. Proceedings of SPIE, 2015, 9655: 96551V.
    [26] YUAN L B, LIU ZH H, YANG J, et al. Two-beam optical tweezers built by a two-core fiber[J]. Proceedings of SPIE, 2008, 7004: 70040R. doi: 10.1117/12.785205
    [27] LIU ZH H, ZHANG Y X, ZHANG Y, et al.. All-fiber self-accelerating Bessel-like beam for optical trapping application[C]. Optics and the Brain 2015, Optica Publishing Group, 2015: JT3A. 2.
    [28] XIE S, PENNETTA R, RUSSELL P S J. Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber[J]. Optica, 2016, 3(3): 277-282. doi: 10.1364/OPTICA.3.000277
    [29] GHARAATI A R, ELAHI P, JAFARI M. Calculation of temperature distribution in eccentric multi core diode pumped fiber lasers by green function method[J]. Acta Physica Polonica A, 2009, 116(4): 566-569. doi: 10.12693/APhysPolA.116.566
    [30] 孙林, 刘宁, 蔡轶, 等. 多芯光纤通信海缆的能效理论及系统参数优化[J]. 光学学报,2022,42(15):1506005. doi: 10.3788/AOS202242.1506005

    SUN L, LIU N, CAI Y, et al. Power efficiency theory and system parameter optimization for multicore fiber-based submarine cables[J]. Acta Optica Sinica, 2022, 42(15): 1506005. (in Chinese) doi: 10.3788/AOS202242.1506005
    [31] MORANT M, LLORENTE R. Performance analysis of carrier-aggregated multiantenna 4 × 4 MIMO LTE-A fronthaul by spatial multiplexing on multicore fiber[J]. Journal of Lightwave Technology, 2018, 36(2): 594-600. doi: 10.1109/JLT.2017.2786582
    [32] MACHO A, MORANT M, LLORENTE R. Experimental evaluation of nonlinear crosstalk in multi-core fiber[J]. Optics Express, 2015, 23(14): 18712-18720. doi: 10.1364/OE.23.018712
    [33] 刘建霞, 薛丽, 陈宫傣, 等. 偏心光纤倏逝场传感灵敏度的研究[J]. 与光电子学进展,2016,53(7):071301.

    LIU J X, XUE L, CHEN G D, et al. Sensitivity of evanescent field sensors based on eccentric core optical fiber[J]. Laser &Optoelectronics Progress, 2016, 53(7): 071301. (in Chinese)
    [34] 张世达, 耿乙迦. 碲化铋倏逝场锁模器件的超快光纤 器[J]. 中国光学,2022,15(3):433-442. doi: 10.37188/CO.2021-0216

    ZHANG SH D, GENG Y J. Ultrafast fiber laser based on bismuth telluride evanescent field mode-locked device[J]. Chinese Optics, 2022, 15(3): 433-442. (in Chinese) doi: 10.37188/CO.2021-0216
    [35] LIU J X, YUAN L B. Evanescent field characteristics of eccentric core optical fiber for distributed sensing[J]. Journal of the Optical Society of America A, 2014, 31(3): 475-479. doi: 10.1364/JOSAA.31.000475
    [36] BOULOUMIS T D, NIC CHORMAIC S. From far-field to near-field micro- and nanoparticle optical trapping[J]. Applied Sciences, 2020, 10(4): 1375. doi: 10.3390/app10041375
    [37] LEITZ K H, QUENTIN U, ALEXEEV I, et al. Process investigations of optical trap assisted direct-write microsphere near-field nanostructuring[J]. CIRP Annals, 2012, 61(1): 207-210. doi: 10.1016/j.cirp.2012.03.047
    [38] 苑立波. 纤端光操纵: 光镊·光手·光枪[J]. 光学与光电技术,2020,18(2):1-6.

    YUAN L B. Specialty optical fibers for micro particle manipulation: optical tweezers, hands and gun[J]. Optics &Optoelectronic Technology, 2020, 18(2): 1-6. (in Chinese)
    [39] 马光辉, 于贺, 刘宇乾, 等. 金属纳米表面等离子激元的共振辐射增强研究[J]. 与光电子学进展,2018,55(4):042601.

    MA G H, YU H, LIU Y Q, et al. Resonance radiation enhancement of metal nanometer surface plasmons[J]. Laser &Optoelectronics Progress, 2018, 55(4): 042601. (in Chinese)
    [40] LV S J, DU Y P, WU F T, et al. Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling[J]. Nanoscale Advances, 2022, 4(12): 2608-2631. doi: 10.1039/D2NA00140C
    [41] TANDON B, AGRAWAL A, HEO S, et al. Competition between depletion effects and coupling in the Plasmon modulation of doped metal oxide nanocrystals[J]. Nano Letters, 2019, 19(3): 2012-2019. doi: 10.1021/acs.nanolett.9b00079
    [42] PELLAS V, HU D, MAZOUZI Y, et al. Gold nanorods for LSPR biosensing: synthesis, coating by silica, and bioanalytical applications[J]. Biosensors, 2020, 10(10): 146. doi: 10.3390/bios10100146
    [43] LIBERALE C, MINZIONI P, CRISTIANI I. All optical 3-D trapping through a single-fiber tweezer[C]. The European Conference on Lasers and Electro-Optics, Optica Publishing Group, 2007: CL2_2.
    [44] 申泽, 成煜, 邓洪昌, 等. 鸟喙形环形芯光纤光镊粒子捕获受力分析[J]. 光学学报,2021,41(18):1808001. doi: 10.3788/AOS202141.1808001

    SHEN Z, CHENG Y, DENG H CH, et al. Analysis of trapping force of beak-shaped optical tweezers with annular core fibers for particles[J]. Acta Optica Sinica, 2021, 41(18): 1808001. (in Chinese) doi: 10.3788/AOS202141.1808001
    [45] LIU ZH H, WANG L, ZHANG Y, et al. Particle size measurement using a fibre-trap-based interference approach[J]. Optics Communications, 2020, 471: 125839. doi: 10.1016/j.optcom.2020.125839
    [46] 张乃倩, 方群. 基于微流控系统的单细胞代谢物分析技术的研究进展[J]. 分析化学,2021,49(11):1779-1791.

    ZHANG N Q, FANG Q. Progress of single-cell metabolite analysis technology based on microfluidic system[J]. Chinese Journal of Analytical Chemistry, 2021, 49(11): 1779-1791. (in Chinese)
    [47] 李钢敏, 李致远, 李正冉, 等. 基于表面等离子体共振的高灵敏度光纤微流控芯片[J]. 中国 ,2021,48(1):0106002. doi: 10.3788/CJL202148.0106002

    LI G M, LI ZH Y, LI ZH R, et al. High-sensitivity optical-fiber microfluidic chip based on surface Plasmon resonance[J]. Chinese Journal of Lasers, 2021, 48(1): 0106002. (in Chinese) doi: 10.3788/CJL202148.0106002
    [48] ZHAI J, YI SH H, JIA Y W, et al. Cell-based drug screening on microfluidics[J]. TrAC Trends in Analytical Chemistry, 2019, 117: 231-241. doi: 10.1016/j.trac.2019.05.018
    [49] 王志乐, 王著元, 宗慎飞, 等. 微流控SERS芯片及其生物传感应用[J]. 中国光学,2018,11(3):513-530. doi: 10.3788/co.20181103.0513

    WANG ZH L, WANG ZH Y, ZONG SH F, et al. Microfluidic SERS chip and its biosensing applications[J]. Chinese Optics, 2018, 11(3): 513-530. (in Chinese) doi: 10.3788/co.20181103.0513
    [50] FALLAHI H, ZHANG J, PHAN H P, et al. Flexible microfluidics: fundamentals, recent developments, and applications[J]. Micromachines, 2019, 10(12): 830. doi: 10.3390/mi10120830
    [51] KRITZINGER A, FORBES A, FORBES P B C. Optical trapping and fluorescence control with vectorial structured light[J]. Scientific Reports, 2022, 12(1): 17690. doi: 10.1038/s41598-022-21224-1
    [52] PAN X J, WU J Y, LI ZH L, et al. Laguerre-Gaussian mode purity of Gaussian vortex beams[J]. Optik, 2021, 230: 166320. doi: 10.1016/j.ijleo.2021.166320
    [53] KHONINA S N, STRILETZ A S, KOVALEV A A, et al. Propagation of laser vortex beams in a parabolic optical fiber[J]. Proceedings of SPIE, 2010, 7523: 75230B.
    [54] WANG J H, CHEN R SH, YAO J N, et al. Random distributed feedback fiber laser generating cylindrical vector beams[J]. Physical Review Applied, 2019, 11(4): 044051. doi: 10.1103/PhysRevApplied.11.044051
    [55] LIU ZH H, WANG L, LIANG P B, et al. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment[J]. Optics Letters, 2013, 38(14): 2617-2620. doi: 10.1364/OL.38.002617
    [56] WU H, JIANG CH L, REN A N, et al. Single-fiber optical tweezers for particle trapping and axial reciprocating motion using dual wavelength and dual mode[J]. Optics Communications, 2022, 517: 128333. doi: 10.1016/j.optcom.2022.128333
    [57] ZHANG Y, ZHAO L, CHEN Y H, et al. Single optical tweezers based on elliptical core fiber[J]. Optics Communications, 2016, 365: 103-107. doi: 10.1016/j.optcom.2015.11.076
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  748
  • HTML全文浏览量:  310
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-12
  • 修回日期:  2023-02-20
  • 网络出版日期:  2023-05-16

目录

    /

    返回文章
    返回
    Baidu
    map