留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨气高精度 光谱检测装置的设计及实现

杨天悦 宫廷 郭古青 孙小聪 田亚莉 邱选兵 何秋生 高晓明 李传亮

杨天悦, 宫廷, 郭古青, 孙小聪, 田亚莉, 邱选兵, 何秋生, 高晓明, 李传亮. 氨气高精度 光谱检测装置的设计及实现[J]. , 2023, 16(5): 1129-1136. doi: 10.37188/CO.2023-0023
引用本文: 杨天悦, 宫廷, 郭古青, 孙小聪, 田亚莉, 邱选兵, 何秋生, 高晓明, 李传亮. 氨气高精度 光谱检测装置的设计及实现[J]. , 2023, 16(5): 1129-1136. doi: 10.37188/CO.2023-0023
YANG Tian-yue, GONG Ting, GUO Gu-qing, SUN Xiao-cong, TIAN Ya-li, QIU Xuan-bing, HE Qiu-sheng, GAO Xiao-ming, LI Chuan-liang. Design and achievement of a device for high-precision ammonia gas detection based on laser spectroscopy[J]. Chinese Optics, 2023, 16(5): 1129-1136. doi: 10.37188/CO.2023-0023
Citation: YANG Tian-yue, GONG Ting, GUO Gu-qing, SUN Xiao-cong, TIAN Ya-li, QIU Xuan-bing, HE Qiu-sheng, GAO Xiao-ming, LI Chuan-liang. Design and achievement of a device for high-precision ammonia gas detection based on laser spectroscopy[J]. Chinese Optics, 2023, 16(5): 1129-1136. doi: 10.37188/CO.2023-0023

氨气高精度 光谱检测装置的设计及实现

doi: 10.37188/CO.2023-0023
基金项目: 国家自然科学基金(No. U1810129,No. 52076145,No. 12304403);山西省留学人员科技活动项目(No. 20230031);山西省省筹资金资助回国留学人员科研资助项目(No. 2023-151);山西省基础研究计划(No. 202203021222204);太原科技大学科研启动基金(No. 20222008,No. 20222132);山西省科技成果转化引导专项项目(No. 201904D131025)
详细信息
    作者简介:

    杨天悦(1997—),男,天津人,硕士研究生,2020年于太原科技大学获得学士学位,主要从事 光谱学及应用等方面的研究。E-mail:1330944702@qq.com

    宫 廷(1992—),女,山西忻州人,博士,讲师,硕士生导师,主要从事 光谱学及应用等方面的研究。E-mail:gongting@tyust.edu.cn

    郭古青(1986—),男,山西阳泉人,博士,副教授,硕士生导师,主要从事新型材料表征方法的研究。E-mail:2016035@tyust.edu.cn

    孙小聪(1996—),女,山西运城人,博士,讲师,主要从事量子光学等方面的研究。E-mail:sunxiaocong@tyust.edu.cn

    田亚莉(1991—),女,山西吕梁人,博士,讲师,主要从事原子与分子物理方面的研究。E-mail:tianyali@tyust.edu.cn

    邱选兵(1980—),男,四川内江人,博士,教授,博士生导师,主要从事 光谱技术、嵌入式系统的研究。E-mail:qiuxb@tyust.edu.cn

    何秋生(1977—),男,山西介休人,博士,教授,博士生导师,主要从事有机污染物相关的大气环境、大气化学和污染修复研究。E-mail:heqs@tyust.edu.cn

    高晓明(1965—),男,安徽南陵人,博士,研究员,博士生导师,主要从事高灵敏度光谱检测技术及应用的研究。E-mail:xmgao@aiofm.ac.cn

    李传亮(1983—),男,山东沂源人,博士,教授,博士生导师,2011年于华东师范大学获得博士学位,主要从事 光谱学及应用、光电传感装备的研究。E-mail:clli@tyust.edu.cn

  • 中图分类号: O433.5+1

Design and achievement of a device for high-precision ammonia gas detection based on laser spectroscopy

Funds: Supported by National Natural Science Foundation of China (No. U1810129, No. 52076145, No. 12304403); Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (No. 20230031); Shanxi Scholarship Council of China (No.2023-151); Fundamental Research Program of Shanxi Province (No. 202203021222204); Taiyuan University of Science and Technology Scientific Research Initial Funding (No. 20222008, No. 20222132); Transformation of Scientific and Technological Achievements Fund of Shanxi Province (No. 201904D131025)
More Information
  • 摘要:

    氨气排放会对环境以及人体健康造成危害,因此对环境中氨气浓度的高精度监测显得尤为重要。本文基于具有高灵敏度、高响应速度等优点的离轴积分腔输出光谱技术(OA-ICOS)对氨气高精度检测装置进行设计。使用基长30 cm装有反射率为99.99%的高反镜的光学谐振腔作为气体吸收池,实现了近3000 m的光程,将中心波长为1528 nm的分布反馈式 器(DFB)调谐至6548.611 cm−1和6548.798 cm−1附近,在常温18.6 kPa的气压下对1×10−5~5×10−5范围内NH3进行了检测。测量结果表明NH3浓度与信号幅值的线性拟合度R2可达0.99979。使用Allan方差对实验数据进行分析得到13 s后系统的平均检测极限为9.8×10−9,在103 s时系统的最低检测极限可达7×10−9S/N~1)。实验结果表明,该检测装置具有良好的稳定性与高灵敏度,满足对氨气高精度检测的需求,本文研究为国内自主研发痕量气体高精度检测设备提供了技术经验。

     

  • 图 1  (a)检测装置原理图及(b)谐振腔结构示意图

    Figure 1.  (a) Schematic diagram of detection device and (b) schematic diagram of resonator structure

    图 2  检测装置实物图

    Figure 2.  Detection device diagram

    图 3  (a)体积分数为1×10−5 NH3吸收信号及(b)去除背景信号后的NH3吸收信号

    Figure 3.  (a)NH3 absorption signal with volume fraction of 1×10−5; (b) NH3 absorption signal after removing background signal

    图 4  不同浓度下的NH3测量信号

    Figure 4.  Measured NH3 signals at different concentrations

    图 5  NH3浓度与NH3吸收信号幅度间的线性关系

    Figure 5.  Linear relationship between the real concentrations and the fitted ones of NH3 absorption signal

    图 6  (a)体积分数为1×10−5的NH3测量2000 s的原始数据及(b)Allan方差分析图

    Figure 6.  (a) Row data of NH3 with concentration of 1×10−5 over 2000 s; (b) Allan variance as a function of integration time

    图 7  体积分数为1×10−5 NH3标准气体的检测浓度分布图,红线为高斯函数拟合结果

    Figure 7.  Detection concentration distribution diagram of NH3 standard gas with concentration of 1×10−5. The red line is a Gaussian profile fitting

    表  1  各检测方法对比表

    Table  1.   Comparison table of various detection methods

    序号研究者检测方法吸收线位置
    (cm−1)
    吸收线强
    (cm/mol)
    光程
    (m)
    检测极限
    (1×10−6
    1Claps [11]VOAS6528.761.1741×10−21360.7
    2Miller [12]WMS1103.441.5141×10−19600.0002
    3Guo [13]WMS 2f/1f6599.91.3871×10−21150.16
    4Baer [15]OA-ICOS6528.91.350×10−2150350.002
    5Jia [16]OA-ICOS&
    WMS
    6528.761.174×10−21115.40.274
    6Our workOA-ICOS6548.611.879×10−2130000.007
    6548.791.847×10−21
    注:VOAS (Vibrational overtone absorption spectroscopy); WMS (Wavelength modulation spectroscopy); OA-ICOS (Off-axis integrated cavity output spectroscopy).
    下载: 导出CSV
    Baidu
  • [1] 赵琳, 刘庆岭, 周伟, 等. 工业烟气脱硝技术国内外研究进展[J]. 化学试剂,2021,43(6):747-756.

    ZHAO L, LIU Q L, ZHOU W, et al. Research progress of industrial flue gas denitrification technology[J]. Chemical Reagents, 2021, 43(6): 747-756. (in Chinese)
    [2] LI SH W, CHANG M H, LI H M, et al. Chemical compositions and source apportionment of PM2.5 during clear and hazy days: seasonal changes and impacts of Youth Olympic Games[J]. Chemosphere, 2020, 256: 127163. doi: 10.1016/j.chemosphere.2020.127163
    [3] 李星国. 氢能的发展机遇与面临的挑战[J]. 应用化学,2022,39(7):1157-1166.

    LI X G. Development opportunities and challenges of hydrogen energy[J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1157-1166. (in Chinese)
    [4] 程军杰, 曹智, 杨灿然, 等. 便携式远程 诱导击穿光谱系统及其定量分析性能[J]. 应用化学,2022,39(9):1447-1452.

    CHENG J J, CAO ZH, YANG C R, et al. Quantitative analysis with a portable remote laser-induced breakdown spectroscopy system[J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1447-1452. (in Chinese)
    [5] 唐连波, 付大友, 陈琦, 等. 碳量子点增强气液相化学发光检测二氧化碳[J]. 应用化学,2022,39(8):1294-1302.

    TANG L B, FU D Y, CHEN Q, et al. Enhanced gas-liquid chemiluminescence by carbon dots for determination of carbon dioxide[J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1294-1302. (in Chinese)
    [6] 王磊, 宦克为, 刘小溪, 等. 基于卷积神经网络的近红外光谱全流程分析模型研究[J]. 分析化学,2022,50(12):1918-1926.

    WANG L, HUAN K W, LIU X X, et al. Full-range analysis model of near infrared spectroscopy based on convolutional neural network[J]. Chinese Journal of Analytical Chemistry, 2022, 50(12): 1918-1926. (in Chinese)
    [7] 李岩, 祁昱, 李赫. 拉曼光谱在感染性疾病诊断中的应用进展[J]. 分析化学,2022,50(3):317-326.

    LI Y, QI Y, LI H. Advances of Raman spectroscopy in diagnosis of infectious diseases[J]. Chinese Journal of Analytical Chemistry, 2022, 50(3): 317-326. (in Chinese)
    [8] 黄慧, 周亦辰, 彭宇, 等. 基于量子级联 器中红外光谱技术的幽门螺旋杆菌呼气诊断的可行性研究[J]. 分析化学,2022,50(9):1328-1335.

    HUANG H, ZHOU Y CH, PENG Y, et al. Feasibility study of breath diagnosis in Helicobacter pylori based on quantum cascade laser mid-infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1328-1335. (in Chinese)
    [9] POGÁNY A, WAGNER S, WERHAHN O, et al. Development and metrological characterization of a Tunable Diode Laser Absorption Spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor[J]. Applied Spectroscopy, 2015, 69(2): 257-268. doi: 10.1366/14-07575
    [10] DONG L, TITTEL F K, LI CH G, et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing[J]. Optics Express, 2016, 24(6): A528-A535. doi: 10.1364/OE.24.00A528
    [11] 朱宝余, 孙成勋, 王兰, 等. 氨气检测仪研究现状[J]. 化工进展,2017,36(S1):27-33.

    ZHU B Y, SUN CH X, WANG L, et al. Research status of ammonia gas detector[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 27-33. (in Chinese)
    [12] FENG SH L, QIU X B, GUO G Q, et al. Palm-sized laser spectrometer with high robustness and sensitivity for trace gas detection using a novel double-layer toroidal cell[J]. Analytical Chemistry, 2021, 93(10): 4552-4558. doi: 10.1021/acs.analchem.0c04995
    [13] SHAO L G, CHEN J J, WANG K Y, et al. Highly precise measurement of atmospheric N2O and CO using improved White cell and RF current perturbation[J]. Sensors and Actuators B:Chemical, 2022, 352: 130995. doi: 10.1016/j.snb.2021.130995
    [14] ZHANG L W, PANG T, ZHANG Z R, et al. A novel compact intrinsic safety full range Methane microprobe sensor using "trans-world" processing method based on near-infrared spectroscopy[J]. Sensors and Actuators B:Chemical, 2021, 334: 129680. doi: 10.1016/j.snb.2021.129680
    [15] GUO Y CH, QIU X B, LI N, et al. A portable laser-based sensor for detecting H2S in domestic natural gas[J]. Infrared Physics &Technology, 2020, 105: 103153.
    [16] TIAN J F, ZHAO G, FLEISHER A J, et al. Optical feedback linear cavity enhanced absorption spectroscopy[J]. Optics Express, 2021, 29(17): 26831-26840. doi: 10.1364/OE.431934
    [17] CLAPS R, ENGLICH F V, LELEUX D P, et al. Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy[J]. Applied Optics, 2001, 40(24): 4387-4394. doi: 10.1364/AO.40.004387
    [18] MILLER D J, SUN K, TAO L, et al. Open-path, quantum cascade-laser-based sensor for high-resolution atmospheric ammonia measurements[J]. Atmospheric Measurement Techniques, 2014, 7(1): 81-93. doi: 10.5194/amt-7-81-2014
    [19] GUO X Q, ZHENG F, LI CH L, et al. A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy[J]. Optics and Lasers in Engineering, 2019, 115: 243-248. doi: 10.1016/j.optlaseng.2018.12.005
    [20] TELFAH H, PAUL A C, LIU J J. Aligning an optical cavity: with reference to cavity ring-down spectroscopy[J]. Applied Optics, 2020, 59(30): 9464-9468. doi: 10.1364/AO.405189
    [21] BAER D S, PAUL J B, GUPTA M, et al. Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy[J]. Applied Physics B, 2002, 75(2-3): 261-265. doi: 10.1007/s00340-002-0971-z
    [22] 贾慧, 郭晓勇, 蔡廷栋, 等. 1.531μm附近NH3分子痕量探测[J]. 光谱学与光谱分析,2009,29(12):3173-3176. doi: 10.3964/j.issn.1000-0593(2009)12-3173-04

    JIA H, GUO X Y, CAI T D, et al. Trace detection of ammonia at 1.531 μm[J]. Spectroscopy and Spectral Analysis, 2009, 29(12): 3173-3176. (in Chinese) doi: 10.3964/j.issn.1000-0593(2009)12-3173-04
    [23] 王坤阳. 基于离轴积分腔光谱大气CO2和CH4高精度测量技术研究[D]. 合肥: 中国科学技术大学, 2021.

    WANG K Y. In-site measurement of CO2 and CH4 in atmosphere using off-axis integrated cavity spectroscopy[D]. Hefei: University of Science and Technology of China, 2021. (in Chinese)
    [24] FIEDLER S E, HESE A, RUTH A A. Incoherent broad-band cavity-enhanced absorption spectroscopy[J]. Chemical Physics Letters, 2003, 371(3-4): 284-294. doi: 10.1016/S0009-2614(03)00263-X
    [25] 袁子豪, 黄印博, 钟磬, 等. V形结构离轴积分腔吸收光谱测量装置设计与研究[J]. 中国 ,2023,50(18):1811001.

    YUAN Z H, HUANG Y B, ZHONG Q, et al. Design and study of V-shaped structure off-axis integrated cavity absorption spectroscopy[J]. Chinese Journal of Lasers, 2023, 50(18): 1811001. (in Chinese)
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  74
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-04
  • 录用日期:  2023-04-13
  • 修回日期:  2023-02-24
  • 网络出版日期:  2023-04-13

目录

    /

    返回文章
    返回
    Baidu
    map