High repetition frequency 257 nm deep ultraviolet picosecond laser with 5.2 W output power
-
摘要:
为了提高半导体检测用深紫外 器的检测效率,需要搭建高功率、高重频257 nm深紫外皮秒 器实验平台。本文以光子晶体光纤放大器和腔外四倍频结构为基础,进行了257 nm深紫外 器的实验研究。种子源采用中心波长为1030 nm、脉冲宽度为50 ps的光纤 器,输出功率为20 mW,重复频率为19.8 MHz。通过两级掺镱双包层(65 μm/275 μm)光子晶体光纤棒放大结构,获得了1030 nm高功率基频光。利用二倍频晶体LBO、四倍频晶体BBO,采用腔外倍频方式获得了257 nm深紫外 。种子源通过两级光子晶体光纤放大器输出的1030 nm基频光,输出功率为86 W,经过 聚焦系统后,倍频得到二次谐波515 nm 输出功率为47.5 W,四次谐波257 nm深紫外 输出功率为5.2 W,四次谐波转换效率为6.05%。实验结果表明,该结构可获得高功率257 nm深紫外 输出,为提高半导体检测用 器的检测效率提供了新思路。
Abstract:To improve the detection efficiency of deep ultraviolet laser for semiconductor detection, it is necessary to develop 257 nm deep ultraviolet picosecond laser with high power and high repetition frequency. In this study, a 257 nm deep ultraviolet laser was experimentally investigated based on photonic fiber amplifier and extra-cavity frequency quadrupling. The seed source uses a fiber laser with a central wavelength of 1030 nm and a pulse width of 50 ps, delivering a power output of 20 mW and a repetition frequency of 19.8 MHz. High power 1030 nm fundamental frequency light was obtained through a two-stage ytterbium-doped double cladding (65 μm/275 μm) photonic crystal fiber rod amplification structure, and 257 nm deep ultraviolet laser was generated using double frequency crystal LBO and quadruple frequency crystal BBO. The seed source uses a two-stage photonic crystal fiber amplifier to get a 1030 nm laser with output power of 86 W. After the laser focusing system and frequency doubling, a second harmonic output power of 47.5 W at 515 nm and a fourth harmonic output power of 5.2 W at 257 nm were obtained.The fourth harmonic conversion efficiency was 6.05%. The experimental results show that this structure can obtain high power 257 nm deep ultraviolet laser output, providing a novel approach to improve the detection efficiency of the lasers for semiconductor detection.
-
-
[1] 郑佳琪, 丛振华, 刘兆军, 等. 高重复频率超短 脉冲产生及频率变换技术发展趋势[J]. 中国 ,2021,48(12):1201008. doi: 10.3788/CJL202148.1201008ZHENG J Q, CONG ZH H, LIU ZH J, et al. Recent trend of high repetition rate ultrashort laser pulse generation and frequency conversion[J]. Chinese Journal of Lasers, 2021, 48(12): 1201008. (in Chinese) doi: 10.3788/CJL202148.1201008 [2] 牛娜, 窦微, 浦双双, 等. 蓝光二极管抽运Pr: YLF腔内倍频连续深紫外 器[J]. 中国光学,2021,14(6):1395-1399. doi: 10.37188/CO.2021-0077NIU N, DOU W, PU SH SH, et al. Continuous deep ultraviolet laser by intracavity frequency doubling of blue laser diode pumped Pr: YLF[J]. Chinese Optics, 2021, 14(6): 1395-1399. (in Chinese) doi: 10.37188/CO.2021-0077 [3] 梁延杰, 刘景伟, 闫劭, 等. 蓝光LED激发深紫外上转换发光材料的光学定位与追踪应用[J]. 发光学报,2022,43(9):1436-1445. doi: 10.37188/CJL.20220177LIANG Y J, LIU J W, YAN SH, et al. Blue LED-excitable deep ultraviolet upconversion phosphor for optical locating and tracking application[J]. Chinese Journal of Luminescence, 2022, 43(9): 1436-1445. (in Chinese) doi: 10.37188/CJL.20220177 [4] XU H, LU H, LI ZH L, et al. Deep-ultraviolet femtosecond laser source at 243nm for hydrogen spectroscopy[J]. Optics Express, 2021, 29(11): 17398-17404. doi: 10.1364/OE.426917 [5] WU H Y, ZHANG ZH Q, CHEN S, et al. Development of a deep-ultraviolet pulse laser source operating at 234 nm for direct cooling of Al+ ion clocks[J]. Optics Express, 2021, 29(8): 11468-11478. doi: 10.1364/OE.421684 [6] SADRAEIAN M, ZHANG L, AAVANI F et al.. Viral inactivation by light[J] elight, 2022,18(2). [7] KAWANO Y, HIKITA M, MATSUGAKI N, et al. A crystal-processing machine using a deep-ultraviolet laser: application to long-wavelength native SAD experiments[J]. Acta Crystallographica Section F:Structural Biology Communications, 2022, 78(2): 88-95. doi: 10.1107/S2053230X2101339X [8] 潘永刚, 林兆文, 王奔, 等. 深紫外大口径非球面反射膜的均匀性研究[J]. 中国光学(中英文),2022,15(4):740-746. doi: 10.37188/CO.2022-0005PAN Y G, LIN ZH W, WANG B, et al. Film Thickness uniformity of deep ultraviolet large aperture aspheric mirror[J]. Chinese Optics, 2022, 15(4): 740-746. (in Chinese) doi: 10.37188/CO.2022-0005 [9] BAI ZH N, BAI ZH X, SUN X L, et al. A 33.2 W high beam quality chirped-pulse amplification-based femtosecond laser for industrial processing[J]. Materials, 2020, 13(12): 2841. doi: 10.3390/ma13122841 [10] 王佳敏, 季艳慧, 梁志勇, 等. 532 nm皮秒脉冲 对单晶硅的损伤特性研究[J]. 中国光学,2022,15(2):242-250. doi: 10.37188/CO.2021-0160WANG J M, JI Y H, LIANG ZH Y, et al. Damage characteristics of a 532 nm picosecond pulse laser on monocrystalline silicon[J]. Chinese Optics, 2022, 15(2): 242-250. (in Chinese) doi: 10.37188/CO.2021-0160 [11] MÜLLER M, KLENKE A, GOTTSCHALL T, et al. High-average-power femtosecond laser at 258 nm[J]. Optics Letters, 2017, 42(14): 2826-2829. doi: 10.1364/OL.42.002826 [12] TURCICOVA H, NOVAK O, ROSKOT L, et al. New observations on DUV radiation at 257 nm and 206 nm produced by a picosecond diode pumped thin-disk laser[J]. Optics Express, 2019, 27(17): 24286-24299. doi: 10.1364/OE.27.024286 [13] DÉLEN X, DEYRA L, BENOIT A, et al. Hybrid master oscillator power amplifier high-power narrow-linewidth nanosecond laser source at 257 nm[J]. Optics Letters, 2013, 38(6): 995-997. doi: 10.1364/OL.38.000995 [14] 彭洋, 陈明祥, 罗小兵. 深紫外LED封装技术现状与展望[J]. 发光学报,2021,42(4):542-559. doi: 10.37188/CJL.20200394PENG Y, LUO M X, LUO X B. Status and perspectives of deep ultraviolet LED packaging technology[J]. Chinese Journal of Luminescence, 2021, 42(4): 542-559. (in Chinese) doi: 10.37188/CJL.20200394 [15] WANG L L, XU P F, ZHOU D CH. 1.5μm laser properties of large mode field Er3+/Yb3+ co-doped microstructured fiber cone[J]. Chinese Journal of Luminescence, 2022, 43(4): 509-517. doi: 10.37188/CJL.20220010 [16] GOLDBERG L, COLE B, MCINTOSH C, et al. Narrow-band 1 W source at 257 nm using frequency quadrupled passively Q-switched Yb: YAG laser[J]. Optics Express, 2016, 24(15): 17397-17405. doi: 10.1364/OE.24.017397 [17] KOHNO K, ORII Y, SAWADA H, et al. High-power DUV picosecond pulse laser with a gain-switched-LD-seeded MOPA and large CLBO crystal[J]. Optics Letters, 2020, 45(8): 2351-2354. doi: 10.1364/OL.389017 [18] LEI Z, HUIRU Z, NIT, et al.. 'plug and-play' plasmonic metafibers for ultrafast fiber lasers[J]. Light: Advanced Manufacturing. doi: 10.37188/lam.2022.045. [19] 陈晖, 白振旭, 王建才, 等. 百瓦级PCFA/LBO倍频绿光皮秒 器[J]. 红外与 工程,2021,50(11):20200522. doi: 10.3788/IRLA20200522CHEN H, BAI ZH X, WANG J C, et al. Hundred-watt green picosecond laser based on LBO frequency-doubled photonic crystal fiber amplifier[J]. Infrared and Laser Engineering, 2021, 50(11): 20200522. (in Chinese) doi: 10.3788/IRLA20200522 [20] HE H J, YU J, ZHU W T, et al. A deep-UV picosecond laser for photocathode electron gun[J]. Optics Communications, 2022, 512: 128059. doi: 10.1016/j.optcom.2022.128059 [21] PAN L, GENG J H, JIANG SH B. High power picosecond green and deep ultraviolet generations with an all-fiberized MOPA[J]. Optics Letters, 2022, 47(19): 5140-5143. doi: 10.1364/OL.472644