-
摘要:
传统的解析理论设计方案存在计算复杂度高、有限解析解、耗时长等问题。为了解决以上问题,在传统的光器件设计基础上,提出一种依据逆向设计方法的分光比可调的光功率分束器方案。在1.92 μm×1.92 μm的紧凑区域内,引入Ge2Sb2Se4Te1(GSST)相变材料改变器件的折射率分布。利用直接二进制搜索算法搜索GSST晶态和非晶态的最优状态分布。设计实现同一种器件结构,分光比可调的T型光功率分束器。仿真分析了器件的初始结构、分光比、相变材料区域状态分布、制造容差以及光场分布。结果表明:分光比分别为1∶1、1.5∶1、2∶1的3种光功率分束器在波长1530 nm−1560 nm之间的最小相对误差分别为0.004%、0.14%和0.22%,在制造容差范围内传输曲线最大波动分别是0.95 dB、1.21 dB、1.18 dB。该分光器结构紧凑,在光通信和信息处理领域有着较大的应用潜力。
Abstract:Traditional analytical theory design scheme faces problems, such as high computational complexity, limited analytical solution, and high time-consumption. To cambat these issues, based on the design of traditional optical devices, a scheme for designing an optical power splitter with adjustable split ratio according to the reverse design method is proposed. In a compact region of 1.92 μm×1.92 μm, Ge2Sb2Se4Te1(GSST) is introduced to change the refractive index distribution of the device. The direct binary search algorithm is utilized to search the optimal state distribution of GSST in crystalline and amorphous states. A T-shaped optical power splitter with adjustable split ratio is designed and implemented for the same device structure. The initial structure, split ratio, phase change material region state distribution, manufacturing tolerance, and light field distribution of the device are simulated and analyzed. The results show the minimum relative errors of the designed optical power splitters with three splitting ratios of 1∶1, 1.5∶1 and 2∶1 between wavelengths 1530 nm and 1560 nm are 0.004%, 0.14% and 0.22%, respectively. The maximum fluctuations of the transmission curve in the manufacturing tolerance range are 0.95 dB, 1.21 dB and 1.18 dB, respectively. The splitter has a compact structure and great potential for applications in optical communication and information processing.
-
Key words:
- nanophotonic system /
- optical power splitter /
- reverse design /
- direct binary search
-
表 1 不同分光比器件的不同端口在不同制造容差下的误差分析表
Table 1. The error analysis table of different ports of devices with different split ratios under different manufacturing tolerances
Split
ratioMax
absolute error
Out1(+10)/dBMax absolute
error
Out2(+10)/dBMax absolute
error
Out1(−10)/dBMax absolute
error
Out2(−10)/dB1∶1 0.26 0.26 0.93 0.95 1.5∶1 0.61 1.05 1.21 0.53 2∶1 0.50 1.18 1.16 0.71 -
[1] TAHERSIMA M H, KOJIMA K, KOIKE-AKINO T, et al. Deep neural network inverse design of integrated photonic power splitters[J]. Scientific Reports, 2019, 9(1): 1368. doi: 10.1038/s41598-018-37952-2 [2] YUAN H, WU J G, ZHANG J P, et al. Non-volatile programmable ultra-small photonic arbitrary power splitters[J]. Nanomaterials, 2022, 12(4): 669. doi: 10.3390/nano12040669 [3] XIE H C, LIU Y J, SUN W Z, et al. Inversely designed 1× 4 power splitter with arbitrary ratios at 2-μm spectral band[J]. IEEE Photonics Journal, 2018, 10(4): 2700506. [4] 杨知虎, 傅佳慧, 张玉萍, 等. 基于深度学习的Fano共振超材料设计[J]. 中国光学(中英文),2023,16(4):816-823.YANG ZH H, FU J H, ZHANG Y P, et al. Fano resonances design of metamaterials based on deep learning[J]. Chinese Optics, 2023, 16(4): 816-823. (in Chinese) [5] YUAN H, WANG ZH H, ZHANG J P, et al. Ultra-compact programmable arbitrary power splitter[J]. Proceedings of SPIE, 2021, 12062: 1206207. [6] LIU Y J, WANG Z, LIU Y L, et al. Ultra-compact mode-division multiplexed photonic integrated circuit for dual polarizations[J]. Journal of Lightwave Technology, 2021, 39(18): 5925-5932. doi: 10.1109/JLT.2021.3092941 [7] MA H S, YANG J B, HUANG J, et al. Inverse-designed single-mode and multi-mode nanophotonic waveguide switches based on hybrid silicon-Ge2Sb2Te5 platform[J]. Results in Physics, 2021, 26: 104384. doi: 10.1016/j.rinp.2021.104384 [8] WANG Q, CHUMAK A V, PIRRO P. Inverse-design magnonic devices[J]. Nature Communications, 2021, 12(1): 2636. doi: 10.1038/s41467-021-22897-4 [9] XIE H CH, LIU Y J, WANG Y H, et al. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure[J]. IEEE Photonics Technology Letters, 2020, 32(6): 341-344. doi: 10.1109/LPT.2020.2975128 [10] LU L L Z, LIU D M, ZHOU F Y, et al. Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures[J]. Optics Letters, 2016, 41(21): 5051-5054. doi: 10.1364/OL.41.005051 [11] 严德贤, 陈欣怡, 封覃银, 等. 二氧化钒辅助的可切换多功能超材料结构研究[J]. 中国光学(中英文),2023,16(3):514-522. doi: 10.37188/CO.2022-0193YAN D X, CHEN X Y, FENG Q Y, et al. A vanadium dioxide-assisted switchable multifunctional metamaterial structure[J]. Chinese Optics, 2023, 16(3): 514-522. (in Chinese) doi: 10.37188/CO.2022-0193 [12] 张晓斌, 韩伟娜. 角度复用的光学加密超表面的超快金宝搏188软件怎么用 嵌套加工方法研究[J]. 中国光学(中英文),2023,16(4):889-903.ZHANG X B, HAN W N. Ultrafast laser nested machining method for angle-multiplexed optically encrypted metasurface[J]. Chinese Optics, 2023, 16(4): 889-903. (in Chinese) [13] PENG ZH, FENG J B, YUAN H, et al. A non-volatile tunable ultra-compact silicon photonic logic gate[J]. Nanomaterials, 2022, 12(7): 1121. doi: 10.3390/nano12071121 [14] MA H S, HUANG J, ZHANG K W, et al. Inverse-designed arbitrary-input and ultra-compact 1× N power splitters based on high symmetric structure[J]. Scientific Reports, 2020, 10(1): 11757. doi: 10.1038/s41598-020-68746-0 [15] ARUNACHALAM M, RAJU S. Power efficient space division multiplexing–wavelength division multiplexing system using multimode EDFA with elevated refractive index profile[J]. International Journal of Communication Systems, 2022, 35(6): e5065. [16] FERNÁNDEZ DE CABO R, GONZÁLEZ-ANDRADE D, CHEBEN P, et al. High-performance on-chip silicon beamsplitter based on subwavelength metamaterials for enhanced fabrication tolerance[J]. Nanomaterials, 2021, 11(5): 1304. doi: 10.3390/nano11051304 [17] LU M J, DENG CH Y, ZHENG P F, et al. Ultra-compact TE-mode-pass power splitter based on subwavelength gratings and hybrid plasmonic waveguides on SOI platform[J]. Optics Communications, 2021, 498: 127250. doi: 10.1016/j.optcom.2021.127250 [18] MISCUGLIO M, MENG J W, YESILIURT O, et al. . Artificial synapse with mnemonic functionality using GSST-based photonic integrated memory[C]. Proceedings of 2020 International Applied Computational Electromagnetics Society Symposium. IEEE, 2020: 1-3. [19] ZHANG Y F, CHOU J B, LI J Y, et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics[J]. Nature Communications, 2019, 10(1): 4279. doi: 10.1038/s41467-019-12196-4